留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于修正偶应力理论的应力最小化双向渐进结构拓扑优化方法

张漫哲 顾水涛 冯志强

张漫哲, 顾水涛, 冯志强. 基于修正偶应力理论的应力最小化双向渐进结构拓扑优化方法[J]. 应用数学和力学, 2025, 46(1): 12-28. doi: 10.21656/1000-0887.450038
引用本文: 张漫哲, 顾水涛, 冯志强. 基于修正偶应力理论的应力最小化双向渐进结构拓扑优化方法[J]. 应用数学和力学, 2025, 46(1): 12-28. doi: 10.21656/1000-0887.450038
ZHANG Manzhe, GU Shuitao, FENG Zhiqiang. Bidirectional Evolutionary Topology Optimization for Stress Minimization Based on the Modified Couple Stress Elasticity[J]. Applied Mathematics and Mechanics, 2025, 46(1): 12-28. doi: 10.21656/1000-0887.450038
Citation: ZHANG Manzhe, GU Shuitao, FENG Zhiqiang. Bidirectional Evolutionary Topology Optimization for Stress Minimization Based on the Modified Couple Stress Elasticity[J]. Applied Mathematics and Mechanics, 2025, 46(1): 12-28. doi: 10.21656/1000-0887.450038

基于修正偶应力理论的应力最小化双向渐进结构拓扑优化方法

doi: 10.21656/1000-0887.450038
(我刊编委冯志强来稿)
详细信息
    作者简介:

    张漫哲(1999—),男,硕士生(E-mail: 2238428037@qq.com)

    顾水涛(1979—),男,教授(E-mail: gust@cqu.edu.cn)

    通讯作者:

    冯志强(1963—),男,教授,博士生导师(通讯作者. E-mail: zhiqiang.feng@univ-evry.fr)

  • 中图分类号: O343.4

Bidirectional Evolutionary Topology Optimization for Stress Minimization Based on the Modified Couple Stress Elasticity

(Contributed by FENG Zhiqiang, M.AMM Editorial Board)
  • 摘要: 研究并探讨了基于应力的双向渐进结构拓扑优化(BESO)法在修正偶应力弹性理论中的应用. 该方法允许对尺寸问题相关的微观结构均质连续体进行拓扑优化. 其通过引入一种与尺寸相关的,基于修正偶应力理论的,非经典等效应力的新颖公式,对经典的BESO技术进行了扩展,并在体积约束的条件下进行应力最小化设计. 设计变量的迭代更新依赖于灵敏度分析,其涉及对目标函数p范数全局应力的直接求导. 理论中涉及高阶弹性,因此为了满足有限元实现时需要的C1节点连续性,在插值中将传统的Lagrange插值与一个含待定系数的插值函数相结合. 通过三个不同的数值算例,分析了尺寸效应对应力优化设计过程及结果的影响. 同时探讨了其他参数包括范数p值和材料体积分数的作用. 获得的研究结果证明了所提出的基于应力的BESO方法在涉及尺寸效应相关的拓扑优化设计方向的潜力.
    1)  (我刊编委冯志强来稿)
  • 图  1  修正偶应力理论下单位体积δxδy上的平面应力分布

    Figure  1.  The plane stress distribution on a unit volume δxδy according to the modified couple stress elasticity

    图  2  四点Gauss积分策略

    Figure  2.  The 4-point Gauss integration strategy

    图  3  基于偶应力理论的BESO模型流程图

    Figure  3.  The flowchart of the couple stress based BESO model

    图  4  矩形梁结构:设计域以360×60网格离散

    Figure  4.  The rectangular beam structure with the design domain is discretized by a 360×60 mesh

    图  5  基于经典弹性理论的应力最优拓扑结构

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  5.  Stress optimization topology structures based on the classical elasticity theory

    图  6  基于修正偶应力理论的应力最优拓扑结构及应力分量云图(H/l=107,103)

    Figure  6.  Stress optimization topology structures and stress component contours based on the couple stress theory (H/l=107, 103)

    图  7  基于修正偶应力理论的应力最优拓扑结构及应力分量云图(H/l=100,10)

    Figure  7.  Stress optimization topology structures and stress component contours based on the couple stress theory (H/l=100, 10)

    图  8  基于修正偶应力理论的应力最优拓扑结构及应力分量云图(H/l=5,2.5)

    Figure  8.  Stress optimization topology structures and stress component contours based on the couple stress theory (H/l=5, 2.5)

    图  9  σPN值随尺寸效应的演化:偶应力优化模型与经典弹性优化模型的比较

    Figure  9.  Evolution of σPN vs. the size effect: comparison between the couple stress-based optimization model and the classical elasticity-based model

    图  10  L型支架结构的设计域

    Figure  10.  The design domain of the L-bracket structure

    图  11  应力范数p值的影响:应力优化结构设计和应力σe分布云图的比较

    Figure  11.  Influences of stress norm p values: comparison of stress-optimized structural designs and stress σe distribution contours

    图  12  悬臂梁结构的设计域

    Figure  12.  The design domain of the cantilever beam structure

    图  13  体积限制分数的影响:应力优化结构设计和应力σe分布云图的比较

    Figure  13.  Influences of the volume fractions constraint: comparison of stress-optimized structural designs and stress σe distribution contours

    表  1  不同体积分数下的全局应力水平对比

    Table  1.   Comparison of global stress levels under different volume fractions

    volume limitation V* classical theory-based σPN/MPa modified couple stress theory-based σPN/MPa
    60% 1.872 2.060
    40% 2.384 2.665
    20% 4.588 4.908
    下载: 导出CSV
  • [1] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71 (2): 197-224. doi: 10.1016/0045-7825(88)90086-2
    [2] BENDSØE M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1 (4): 193-202. doi: 10.1007/BF01650949
    [3] SIGMUND O. On the design of compliant mechanisms using topology optimization[J]. Mechanics of Structures and Machines, 1997, 25 (4): 493-524. doi: 10.1080/08905459708945415
    [4] ROZVANY G I N. Topology optimization in structural mechanics[J]. Structural and Multidisciplinary Optimization, 2001, 21 (2): 89. doi: 10.1007/s001580050173
    [5] ROZVANY G I N. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics[J]. Structural and Multidisciplinary Optimization, 2001, 21 (2): 90-108. doi: 10.1007/s001580050174
    [6] WALLIN M, TORTORELLI D A. Nonlinear homogenization for topology optimization[J]. Mechanics of Materials, 2020, 145 : 103324. doi: 10.1016/j.mechmat.2020.103324
    [7] DBOUK T. A review about the engineering design of optimal heat transfer systems using topology optimization[J]. Applied Thermal Engineering, 2017, 112 : 841-854. doi: 10.1016/j.applthermaleng.2016.10.134
    [8] BRUNS T E. Topology optimization of convection-dominated, steady-state heat transfer problems[J]. International Journal of Heat and Mass Transfer, 2007, 50 (15/16): 2859-2873.
    [9] DVHRING M B, JENSEN J S, SIGMUND O. Acoustic design by topology optimization[J]. Journal of Sound and Vibration, 2008, 317 (3/5): 557-575.
    [10] WADBRO E, BERGGREN M. Topology optimization of an acoustic horn[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 196 (1/3): 420-436.
    [11] DESAI J, FAURE A, MICHAILIDIS G, et al. Topology optimization in acoustics and elasto-acoustics via a level-set method[J]. Journal of Sound and Vibration, 2018, 420 : 73-103. doi: 10.1016/j.jsv.2018.01.032
    [12] MINIACI M, KRUSHYNSKA A, GLIOZZI A S, et al. Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials[J]. Physical Review Applied, 2018, 10 (2): 024012. doi: 10.1103/PhysRevApplied.10.024012
    [13] MAZZOTTI M, FOEHR A, BILAL O R, et al. Bio-inspired non self-similar hierarchical elastic metamaterials[J]. International Journal of Mechanical Sciences, 2023, 241 : 107915. doi: 10.1016/j.ijmecsci.2022.107915
    [14] ERINGEN A. Microcontinuum Field Theories, : Foundations and Solids[M]. New York : Springer, 2012.
    [15] COSSERAT E, COSSERAT F. Theorie des corps d'edormables[Z]. Cornell University Library Historical Math Monographs, 1909.
    [16] REDA H, ALAVI S E, NASIMSOBHAN M, et al. Homogenization towards chiral Cosserat continua and applications to enhanced Timoshenko beam theories[J]. Mechanics of Materials, 2021, 155 : 103728. doi: 10.1016/j.mechmat.2020.103728
    [17] ERINGEN A C, SUHUBI E S. Nonlinear theory of simple micro-elastic solids, Ⅰ[J]. International Journal of Engineering Science, 1964, 2 (2): 189-203. doi: 10.1016/0020-7225(64)90004-7
    [18] MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11 (1): 415-448. doi: 10.1007/BF00253946
    [19] TOUPIN R A. Elastic materials with couple-stresses[J]. Archive for Rational Mechanics and Analysis, 1962, 11 (1): 385-414. doi: 10.1007/BF00253945
    [20] LAI P, CONG Y, GU S, et al. Size-dependent parametrisation of active vibration control for periodic piezoelectric microplate coupled systems: a couple stress-based isogeometric approach[J]. Mechanics of Materials, 2023, 186 : 104788. doi: 10.1016/j.mechmat.2023.104788
    [21] YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39 (10): 2731-2743. doi: 10.1016/S0020-7683(02)00152-X
    [22] ROVATI M, VEBER D. Optimal topologies for micropolar solids[J]. Structural and Multidisciplinary Optimization, 2007, 33 (1): 47-59.
    [23] LIU S, SU W. Topology optimization of couple-stress material structures[J]. Structural and Multidisciplinary Optimization, 2010, 40 (1): 319-327.
    [24] SU W, LIU S. Topology design for maximization of fundamental frequency of couple-stress continuum[J]. Structural and Multidisciplinary Optimization, 2016, 53 (3): 395-408. doi: 10.1007/s00158-015-1316-y
    [25] GANGHOFFER J F, GODA I, NOVOTNY A A, et al. Homogenized couple stress model of optimal auxetic microstructures computed by topology optimization[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 2018, 98 (5): 696-717. doi: 10.1002/zamm.201700154
    [26] CHEN W, HUANG X. Topological design of 3D chiral metamaterials based on couple-stress homogenization[J]. Journal of the Mechanics and Physics of Solids, 2019, 131 : 372-386. doi: 10.1016/j.jmps.2019.07.014
    [27] YANG R J, CHEN C J. Stress-based topology optimization[J]. Structural Optimization, 1996, 12 (2): 98-105.
    [28] ROZVANY G I N. On design-dependent constraints and singular topologies[J]. Structural and Multidisciplinary Optimization, 2001, 21 (2): 164-172. doi: 10.1007/s001580050181
    [29] DUYSINX P, SIGMUND O. New developments in handling stress constraints in optimal material distribution[C]// 7 th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St Louis, MO, USA, 1998. DOI: 10.2514/6.1998-4906.
    [30] BRUGGI M. On an alternative approach to stress constraints relaxation in topology optimization[J]. Structural and Multidisciplinary Optimization, 2008, 36 (2): 125-141. doi: 10.1007/s00158-007-0203-6
    [31] LUO Y, WANG M Y, KANG Z. An enhanced aggregation method for topology optimization with local stress constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254 : 31-41. doi: 10.1016/j.cma.2012.10.019
    [32] PICELLI R, TOWNSEND S, BRAMPTON C, et al. Stress-based shape and topology optimization with the level set method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 329 : 1-23. doi: 10.1016/j.cma.2017.09.001
    [33] HUANG X, XIE Y M. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method[J]. Finite Elements in Analysis and Design, 2007, 43 (14): 1039-1049. doi: 10.1016/j.finel.2007.06.006
    [34] XIA L, ZHANG L, XIA Q, et al. Stress-based topology optimization using bi-directional evolutionary structural optimization method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 333 : 356-370. doi: 10.1016/j.cma.2018.01.035
    [35] FAN Z, XIA L, LAI W, et al. Evolutionary topology optimization of continuum structures with stress constraints[J]. Structural and Multidisciplinary Optimization, 2019, 59 (2): 647-658. doi: 10.1007/s00158-018-2090-4
    [36] ADACHI T, TOMITA Y, TANAKA M. Computational simulation of deformation behavior of 2D-lattice continuum[J]. International Journal of Mechanical Sciences, 1998, 40 (9): 857-866. doi: 10.1016/S0020-7403(97)00127-6
    [37] LE C, NORATO J, BRUNS T, et al. Stress-based topology optimization for continua[J]. Structural and Multidisciplinary Optimization, 2010, 41 (4): 605-620. doi: 10.1007/s00158-009-0440-y
    [38] DUYSINX P, BENDSØE M P. Topology optimization of continuum structures with local stress constraints[J]. International Journal for Numerical Methods in Engineering, 1998, 43 (8): 1453-1478. doi: 10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
    [39] KAHROBAIYAN M H, RAHAEIFARD M, AHMADIAN M T. A size-dependent yield criterion[J]. International Journal of Engineering Science, 2014, 74 : 151-161. doi: 10.1016/j.ijengsci.2013.09.004
    [40] SIGMUND O. A 99 line topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization, 2001, 21 (2): 120-127. doi: 10.1007/s001580050176
    [41] 彭梦瑶, 顾水涛, 周洋靖, 等. 基于LiToSim平台的疲劳寿命评估LtsFatigue软件开发及应用[J]. 应用数学和力学, 2022, 43 (9): 976-986. doi: 10.21656/1000-0887.420277

    PENG Mengyao, GU Shuitao, ZHOU Yangjing, et al. Development and application of fatigue life evaluation software LtsFatigue based on LiToSim[J]. Applied Mathematics and Mechanics, 2022, 43 (9): 976-986. (in Chinese) doi: 10.21656/1000-0887.420277
    [42] 叶彦鹏, 顾水涛, 刘敏, 等. 基于LiToSim平台的海上风机过渡段优化软件开发[J]. 应用数学和力学, 2021, 42 (5): 441-451. doi: 10.21656/1000-0887.410354

    YE Yanpeng, GU Shuitao, LIU Min, et al. Optimization software development for offshore turbine transition structures based on LiToSim[J]. Applied Mathematics and Mechanics, 2021, 42 (5): 441-451. (in Chinese) doi: 10.21656/1000-0887.410354
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  16
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 修回日期:  2024-03-17
  • 刊出日期:  2025-01-01

目录

    /

    返回文章
    返回