留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模态空间时域精细积分的结构动力学参数辨识方法

潘耀宗 赵岩

潘耀宗, 赵岩. 基于模态空间时域精细积分的结构动力学参数辨识方法[J]. 应用数学和力学, 2025, 46(1): 29-39. doi: 10.21656/1000-0887.450071
引用本文: 潘耀宗, 赵岩. 基于模态空间时域精细积分的结构动力学参数辨识方法[J]. 应用数学和力学, 2025, 46(1): 29-39. doi: 10.21656/1000-0887.450071
PAN Yaozong, ZHAO Yan. A Structural Dynamics Parameter Identification Method Based on the Modal Space Time-Domain Precise Integration[J]. Applied Mathematics and Mechanics, 2025, 46(1): 29-39. doi: 10.21656/1000-0887.450071
Citation: PAN Yaozong, ZHAO Yan. A Structural Dynamics Parameter Identification Method Based on the Modal Space Time-Domain Precise Integration[J]. Applied Mathematics and Mechanics, 2025, 46(1): 29-39. doi: 10.21656/1000-0887.450071

基于模态空间时域精细积分的结构动力学参数辨识方法

doi: 10.21656/1000-0887.450071
(我刊编委赵岩来稿)
基金项目: 

国家自然科学基金 11772084

国家自然科学基金 U1906233

国家重点研发计划 2017YFC0307203

详细信息
    作者简介:

    潘耀宗(1997—),男,博士生(E-mail: panyaozong@mail.dlut.edu.cn)

    通讯作者:

    赵岩(1974—),男,教授,博士生导师(通讯作者. E-mail: yzhao@dlut.edu.cn)

  • 中图分类号: O32

A Structural Dynamics Parameter Identification Method Based on the Modal Space Time-Domain Precise Integration

(Contributed by ZHAO Yan, M.AMM Editorial Board)
  • 摘要: 提出了一种基于模态空间时域精细积分的动力学参数辨识方法. 首先,基于时域测量信号和理论预测模型构造辨识方程,在模态空间内,由时域精细积分方法构造了理论预测模型;其次,通过矩阵、向量的Kronecker积运算法则推导了辨识模态的无约束向量的二次型函数,解析地给出了辨识振型的数学表达;最后,通过对辨识优化问题进行数学变换,仅需要辨识结构动力学特性的谱参数(频率和阻尼比),极大地降低了辨识参数的维度. 数值算例中,进行了三自由度弹簧质量系统和高速受电弓的动力学参数辨识,辨识得到的固有频率、阻尼比与理论值相比,误差在8%以内;辨识振型与理论振型之间的夹角的余弦接近1,验证了辨识结果的准确性. 该文提出的方法能够有效地实现辨识谱参数(频率、阻尼)和空间参数(振型)的分离,具有非常好的求解效率和应用前景.
    1)  (我刊编委赵岩来稿)
  • 图  1  三自由度弹簧-质量系统

    Figure  1.  The 3-DOF spring-mass system

    图  2  系统激励与测量位移响应

    Figure  2.  System excitations and measurement displacement responses

    图  3  高速受电弓结构图

    Figure  3.  Structural diagram of the high-speed pantograph

    图  4  高速受电弓系统激励与测量加速度响应

    Figure  4.  Excitation and measurement acceleration response of high-speed pantograph system

    图  5  受电弓滑板振型辨识结果

    Figure  5.  Identification results of mode shapes of the pantograph strip

    图  6  受电弓理论响应与预测响应对比

    Figure  6.  Comparison between theoretical and predictive responses of the pantograph

    表  1  弹簧-质量系统动力学参数辨识结果

    Table  1.   Identification results of dynamic parameters of the spring-mass system

    parameter mode 1 mode 2 mode 3
    f/Hz identification 3.854 6.236 7.339
    theory 3.854 6.238 7.340
    ζ/% identification 1.00 1.02 1.03
    theory 1.00 1.00 1.00
    γ identification 1.65 0.54 0.75
    theory 1.65 0.50 0.70
    CMAC 1.000 0 0.999 7 0.999 0
    下载: 导出CSV

    表  2  不同测量噪声水平谱参数辨识结果

    Table  2.   Dynamic spectral parameter identification results under different measurement noise levels

    measurement noise
    level /%
    mode 1 mode 2 mode 3
    f/Hz ζ/% f/Hz ζ/% f/Hz ζ/%
    5 3.854 1.00 6.238 1.01 7.340 1.01
    10 3.854 1.00 6.237 1.02 7.340 1.02
    15 3.854 1.00 6.236 1.02 7.339 1.03
    20 3.854 1.01 6.236 1.03 7.339 1.05
    下载: 导出CSV

    表  3  谱参数与空间参数耦合和解耦时结果对比

    Table  3.   Comparison of results of spectral parameters coupled and decoupled with spatial parameters

    mode 1 mode 2 mode 3 optimisation time /s
    f/Hz ζ/% γ f/Hz ζ/% γ f/Hz ζ/% γ
    decoupled 3.854 1.00 1.65 6.237 1.02 0.52 7.340 1.02 0.73 22.40
    coupled 3.854 1.00 1.65 6.237 1.02 0.52 7.340 1.02 0.73 121.84
    下载: 导出CSV

    表  4  高速受电弓动力学参数辨识结果

    Table  4.   Identification results of dynamic parameters of the high-speed pantograph

    parameter mode 1 mode 2 mode 3 mode 4 mode 5 mode 6
    f/Hz identification 9.029 12.459 13.753 50.450 52.220 121.552
    theory 9.035 12.472 13.764 50.585 52.376 123.320
    ζ/% identification 1.23 1.08 1.05 1.10 0.90 1.10
    theory 1.00 1.00 1.00 1.00 1.00 1.00
    γ/10-4 identification 2.33 1.71 2.35 3.87 1.28 6.43
    CMAC 0.997 4 0.998 1 0.999 6 0.999 9 0.995 5 0.999 7
    下载: 导出CSV

    表  5  高速受电弓模态试验动力学参数辨识结果

    Table  5.   Identification results of dynamic parameters of the high-speed pantograph modal test

    parameter mode 1 mode 2 mode 3 mode 4 mode 5
    proposed methodology f/Hz 10.2 12.50 48.8 133.6 219.4
    ζ/% 0.46 0.36 3.95 2.711 1.84
    ref. [17] f/Hz 10.0 12.50 48.4 128.5 213.0
    下载: 导出CSV
  • [1] 唐颖卓, 卢光宇, 蔡国平. 基于绳索作动器的大型太空望远镜桁架结构的振动主动控制[J]. 应用数学和力学, 2022, 43 (2): 123-131. doi: 10.21656/1000-0887.420217

    TANG Yingzhuo, LU Guangyu, CAI Guoping. Active vibration control of truss structures for large space telescopes based on cable actuators[J]. Applied Mathematics and Mechanics, 2022, 43 (2): 123-131. (in Chinese) doi: 10.21656/1000-0887.420217
    [2] 李帅, 向致谦, 潘坚文, 等. 高拱坝模态参数识别综述[J]. 地震工程与工程振动, 2023, 43 (2): 1-12.

    LI Shuai, XIANG Zhiqian, PAN Jianwen, et al. Review on modal parameters identification for high arch dams[J]. Earthquake Engineering and Engineering Dynamics, 2023, 43 (2): 1-12. (in Chinese)
    [3] 姚志远, 汪凤泉, 赵淳生. 环境自然激励下一种结构损伤在线识别方法[J]. 应用数学和力学, 2005, 26 (2): 246-252. http://www.applmathmech.cn/article/id/474

    YAO Zhiyuan, WANG Fengquan, ZHAO Chunsheng. A method of online damage identification for structures based on ambient vibration[J]. Applied Mathematics and Mechanics, 2005, 26 (2): 246-252. (in Chinese) http://www.applmathmech.cn/article/id/474
    [4] REYNDERS E. System identification methods for (operational) modal analysis: review and comparison[J]. Archives of Computational Methods in Engineering, 2012, 19 (1): 51-124. doi: 10.1007/s11831-012-9069-x
    [5] SEYBERT A F. Estimation of damping from response spectra[J]. Journal of Sound and Vibration, 1981, 75 (2): 199-206. doi: 10.1016/0022-460X(81)90339-4
    [6] RICHARDSON M H, FORMENTI D L. Global curve fitting of frequency response measurements using the rational fraction polynomial method[C]//Proceeding of 3 rd IMAC. Orlando, 1985: 390-397.
    [7] PEETERS B, VAN DER AUWERAER H, GUILLAUME P, et al. The PolyMAX frequency-domain method: a new standard for modal parameter estimation?[J]. Shock and Vibration, 2004, 11 (3/4): 395-409.
    [8] CUNHA Á, CAETANO E. Experimental modal analysis of civil engineering structures[J]. Sound and Vibration, 2006, 6 (40): 12-20.
    [9] BROWN D L, ALLEMANG R J, ZIMMERMAN R, et al. Parameter estimation techniques for modal analysis[J]. SAE Transactions, 1979, 88 : 828-846.
    [10] VOLD H, KUNDRAT J, ROCKLIN G T, et al. A multi-input modal estimation algorithm for mini-computers[J]. SAE Transactions, 1982, 91 : 815-821.
    [11] IBRAHIM S R, MIKULCIK E C. A method for the direct identification of vibration parameters from the free response[J]. The Shock and Vibration Bulletin, 1977, 47 (4): 183-198.
    [12] JUANG J N, PAPPA R S. An eigensystem realization algorithm for modal parameter identification and model reduction[J]. Journal of Guidance, Control, and Dynamics, 1985, 8 (5): 620-627. doi: 10.2514/3.20031
    [13] XU X, ZHANG H, WEI X, et al. Experimental study on natural vibration characteristics of double-strip high-speed pantograph head[J]. Experimental Mechanics, 2023, 63 (6): 995-1001. doi: 10.1007/s11340-023-00968-5
    [14] KASAI T, YAMAGUCHI I, IGAWA H, et al. On-orbit system identification experiments of the engineering test satellite-Ⅷ[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 2009, 7 (ists26): 79-84.
    [15] 王亮, 蔡毅鹏, 南宫自军. 高速飞行器飞行模态辨识技术及验证研究[J]. 强度与环境, 2022, 49 (4): 23-28.

    WANG Liang, CAI Yipeng, NANGONG Zijun. Application and verification of the high speed aircraft's operational mode identification[J]. Structure & Environment Engineering, 2022, 49 (4): 23-28. (in Chinese)
    [16] YANG J H, LAM H F. An innovative Bayesian system identification method using autoregressive model[J]. Mechanical Systems and Signal Processing, 2019, 133 : 106289.
    [17] 许向红, 罗羿, 张颢辰, 等. 基于模态实验的单滑板受电弓全柔模型修正方法[J]. 力学学报, 2023, 55 (8): 1753-1760.

    XU Xianghong, LUO Yi, ZHANG Haochen, et al. Full flexible model updating of single-strip pantograph based on modal test[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (8): 1753-1760. (in Chinese)
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-05-04
  • 刊出日期:  2025-01-01

目录

    /

    返回文章
    返回