留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

设置惯容系统的非对称大跨悬挂结构风振响应分析

田翀 谭志强 卢兴龙 庞迎波 覃媛媛 葛新广

田翀, 谭志强, 卢兴龙, 庞迎波, 覃媛媛, 葛新广. 设置惯容系统的非对称大跨悬挂结构风振响应分析[J]. 应用数学和力学, 2025, 46(3): 310-323. doi: 10.21656/1000-0887.450078
引用本文: 田翀, 谭志强, 卢兴龙, 庞迎波, 覃媛媛, 葛新广. 设置惯容系统的非对称大跨悬挂结构风振响应分析[J]. 应用数学和力学, 2025, 46(3): 310-323. doi: 10.21656/1000-0887.450078
TIAN Chong, TAN Zhiqiang, LU Xinglong, PANG Yingbo, QIN Yuanyuan, GE Xinguang. Analysis of Wind Vibration Response of Large-Span Asymmetric Suspension Structures With Series Inerter Dampers[J]. Applied Mathematics and Mechanics, 2025, 46(3): 310-323. doi: 10.21656/1000-0887.450078
Citation: TIAN Chong, TAN Zhiqiang, LU Xinglong, PANG Yingbo, QIN Yuanyuan, GE Xinguang. Analysis of Wind Vibration Response of Large-Span Asymmetric Suspension Structures With Series Inerter Dampers[J]. Applied Mathematics and Mechanics, 2025, 46(3): 310-323. doi: 10.21656/1000-0887.450078

设置惯容系统的非对称大跨悬挂结构风振响应分析

doi: 10.21656/1000-0887.450078
基金项目: 

国家自然科学基金 51868007

详细信息
    作者简介:

    田翀(1985—),男,高级工程师,硕士(E-mail: tianchong1110@163.com)

    通讯作者:

    庞迎波(1978—),男,副教授,硕士(通讯作者. E-mail: gxopalo@163.com)

  • 中图分类号: TU317; TU352.1

Analysis of Wind Vibration Response of Large-Span Asymmetric Suspension Structures With Series Inerter Dampers

  • 摘要: 针对非对称大跨悬挂结构双向随机风振响应显著的问题,提出了一种利用惯容系统来抑制结构振动的策略,并针对减振体系随机风振响应分析方法复杂的现状,提出了一种简明分析法. 首先,建立了顺风向脉动激励下结构水平和竖向耦合振动的动力学方程,借助有限元分析技术获得了大跨度悬挂结构的实模态动力参数,并基于实模态理论重构了减振体系的动力方程. 其次,基于复模态法和虚拟激励法,获得了大跨度悬挂结构的位移、层间位移和惯容系统出力等响应量频域统一解,并基于功率谱的二次式分解法获得了上述响应量0阶、2阶和4阶谱矩和方差简明封闭解. 最后,利用算例验证了所提封闭解的正确性,并基于此研究了惯容系统参数对抑制悬挂结构双向风振动的特征. 研究表明,大跨悬挂结构的悬挂部分水平和竖向振动加速度均显著影响舒适度,工程设计时需要考虑双向振动,设置惯容系统可有效降低双向振动.
  • 图  1  设置惯容系统的大跨悬挂结构力学简图

    Figure  1.  The diagram of the large-span suspension structure with SIDs

    图  2  串联惯容系统构造图

    Figure  2.  The set-up of the series inerter damper (SID)

    图  3  悬挂结构随机响应的简明封闭解的计算流程图

    Figure  3.  The calculation flowchart of the concise closed-form solution for the random responses of suspension structures

    图  4  非对称结构计算简图

    Figure  4.  The structural calculating diagram of the asymmetric suspension structure

    图  5  惯容系统在悬挂结构中的布置图

    Figure  5.  The layout of ISDs in the suspension structure

    图  6  节点水平方向位移0阶谱矩

    Figure  6.  0th-order spectral moments of node displacements in the horizontal direction

    图  7  节点水平方向位移2阶谱矩

    Figure  7.  2nd-order spectral moments of node displacements in the horizontal direction

    图  8  节点水平方向位移4阶谱矩

    Figure  8.  4th-order spectral moments of node displacements in the horizontal direction

    图  9  节点竖向位移4阶谱矩

    Figure  9.  4th-order spectral moments of node displacements in the vertical direction

    图  10  惯容系统出力0阶谱矩

    Figure  10.  0th-order spectral moments of the inerter damper's forces

    图  11  惯容系统出力2阶谱矩

    Figure  11.  2nd-order spectral moments of the inerter damper's forces

    图  12  结构水平位移方差对比

    Figure  12.  Comparison of variances of structural horizontal displacements

    图  13  结构竖向位移方差对比

    Figure  13.  Comparison of structural vertical displacement variances

    图  14  结构水平加速度方差对比

    Figure  14.  Comparison of structural horizontal acceleration variances

    图  15  结构竖向加速度方差对比

    Figure  15.  Comparison of structural vertical acceleration variances

    表  1  构件信息表

    Table  1.   Member Information

    №. of elements material across section /mm №. of elements material across section /mm
    C30 box 650×400 Q390 box 800×800×50
    Q390 H 700×300×20×40 Q390 box 1 000×1 000×80
    Q390 H 1 000×400×30×80 Q390 box 600×600×20
    C35 box 1 400×1 400 Q390 H 600×300×30×90
    下载: 导出CSV
  • [1] 肖魁, 贾水钟, 贾君玉, 等. 上海图书馆东馆悬挂结构方案设计与研究[J]. 建筑结构, 2022, 52 (1): 1-6.

    XIAO Kui, JIA Shuizhong, JIA Junyu, et al. Design and research on suspended structure scheme of Shanghai East Library[J]. Building Structure, 2022, 52 (1): 1-6. (in Chinese)
    [2] 朱前坤, 蒲兴龙, 惠晓丽, 等. 基于人群-结构耦合作用甘肃省体育馆悬挂结构振动舒适度评估及控制[J]. 工程力学, 2018, 35 (S1): 46-52. doi: 10.6052/j.issn.1000-4750.2017.06.S003

    ZHU Qiankun, PU Xinglong, HUI Xiaoli, et al. Serviceability evaluation and control of suspension structure of Gansu gymnasium based on pedestrian-structure coupled vibration[J]. Engineering Mechanics, 2018, 35 (S1): 46-52. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.S003
    [3] 刘郁馨, 吕志涛. 单段悬挂结构随机动力参数优化解[J]. 南京建筑工程学院学报(自然科学版), 2011, 56 (1): 1-8.

    LIU Yuxin, LÜ Zhitao. Optimal solution of random dynamic action for suspension building structures[J]. Journal of Nanjing Architectural and Civil Engineering Institute (Natural Science Edition), 2011, 56 (1): 1-8. (in Chinese)
    [4] GOODNO B J, GERE J M. Earthquake behavior of suspended-floor buildings[J]. Journal of the Structural Division, 1976, 102 (5): 973-992.
    [5] LIU Y X, LÜ Z T. Seismic performance and storey-based stability of suspended buildings[J]. Advances in Structural Engineering, 2014, 17 (10): 1531-1550. doi: 10.1260/1369-4332.17.10.1531
    [6] CHEN M, LIANG X, YANG Z, et al. Analytical study on the random seismic responses of an asymmetrical suspension structure[J]. Buildings, 2023, 13 (6): 1435. doi: 10.3390/buildings13061435
    [7] TIAN C, YAO W, PAN Y, et al. Dynamic response of asymmetric suspended structure subjected to random wind excitation[J]. The Structural Design of Tall and Special Buildings, 2024, 33 (10): e2106. doi: 10.1002/tal.2106
    [8] KUMAR A, SAHA S K, MATSAGAR V A. Stochastic response analysis of elastic and inelastic systems with uncertain parameters under random impulse loading[J]. Journal of Sound and Vibration, 2019, 461 : 114899. doi: 10.1016/j.jsv.2019.114899
    [9] 葛新广, 张梦丹, 龚景海, 等. 频响函数二次正交法在Davenport风速谱下结构系列响应简明封闭解的应用研究[J]. 振动与冲击, 2021, 40 (21): 207-214.

    GE Xinguang, ZHANG Mengdan, GONG Jinghai, et al. Application of FRF quadratic orthogonal method in getting concise closed form solutions of structural series responses under Davenport wind speed spectrum[J]. Journal of Vibration and Shock, 2021, 40 (21): 207-214. (in Chinese)
    [10] GE X G, GONG J H, ZHAO C J, et al. Structural dynamic responses of building structures with non-viscous dampers under Kanai-Tajimi spectrum excitation[J]. Journal of Sound and Vibration, 2022, 517 : 116556. doi: 10.1016/j.jsv.2021.116556
    [11] 李创第, 李宇翔, 杨雪峰, 等. 六参数实用黏弹性阻尼结构基于Davenport风谱风振响应的复模态法[J]. 应用数学和力学, 2023, 44 (3): 248-259. doi: 10.21656/1000-0887.420211

    LI Chuangdi, LI Yuxiang, YANG Xuefeng, et al. A complex mode method for wind-induced responses of 6-parameter practical viscoelastic damping energy dissipation structures based on the davenport wind speed spectrum[J]. Applied Mathematics and Mechanics, 2023, 44 (3): 248-259. (in Chinese) doi: 10.21656/1000-0887.420211
    [12] YANG W, DENG E, LEI M, et al. Transient aerodynamic performance of high-speed trains when passing through two windproof facilities under crosswinds: a comparative study[J]. Engineering Structures, 2019, 188 : 729-744. doi: 10.1016/j.engstruct.2019.03.070
    [13] 李创第, 王磊石, 邹万杰, 等. 广义Maxwell阻尼器高层结构随机风振响应解析法[J]. 广西大学学报(自然科学版), 2016, 41 (4): 953-963.

    LI Chuangdi, WANG Leishi, ZOU Wanjie, et al. Analytic method for random wind-induced response of high-rise structure with general Maxwell dampers[J]. Journal of Guangxi University (Natural Science Edition), 2016, 41 (4): 953-963. (in Chinese)
    [14] 赵中伟, 张永高. 基于本征-虚拟激励法的大跨钢结构风振响应分析[J]. 空间结构, 2020, 26 (1): 15-23.

    ZHAO Zhongwei, ZHANG Yonggao. Wind-induced response analysis of complex steel structures based on pod-pseudo excitation method[J]. Spatial Structures, 2020, 26 (1): 15-23. (in Chinese))
    [15] GE X G, LI C D, AZIM I, et al. Structural dynamic responses of linear structures subjected to Kanai-Tajimi excitation[J]. Structures, 2021, 34 : 3958-3967. doi: 10.1016/j.istruc.2021.08.092
    [16] ZHANG R F, ZHAO Z P, PAN C, et al. Damping enhancement principle of inerter system[J]. Structural Control and Health Monitoring, 2020, 27 (5): e2523.
    [17] 李创第, 江丽富, 王瑞勃, 等. 单自由度混联Ⅱ型惯容系统随机地震动响应分析[J]. 应用数学和力学, 2023, 44 (3): 260-271. doi: 10.21656/1000-0887.430166

    LI Chuangdi, JIANG Lifu, WANG Ruibo, et al. Responses of SDOF structures with SPIS-Ⅱ dampers under random seismic excitation[J]. Applied Mathematics and Mechanics, 2023, 44 (3): 260-271. (in Chinese) doi: 10.21656/1000-0887.430166
    [18] 葛新广, 龚景海, 李创第, 等. 功率谱二次正交化法在随机地震动响应的应用[J]. 振动工程学报, 2022, 35 (3): 616-624.

    GE Xinguang, GONG Jinghai, LI Chuangdi, et al. Application of quadratic orthogonalization method of response power spectrum to random ground motion response[J]. Journal of Vibration Engineering, 2022, 35 (3): 616-624. (in Chinese)
    [19] DAVENPORT A G. Past, present and future of wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90 (12/13/14/15): 1371-1380.
    [20] LIEVENS K, LOMBAERT G, VAN NIMMEN K, et al. Robust vibration serviceability assessment of footbridges subjected to pedestrian excitation: strategy and applications[J]. Engineering Structures, 2018, 171 : 236-246.
    [21] 卢宇杰, 程逸建, 程正珲, 等. 悬挂结构组合楼盖人致振动舒适度试验研究[J]. 建筑结构学报, 2020, 41 (S2): 263-269.

    LU Yujie, CHENG Yijian, CHENG Zhenghui, et al. Experimental study on vibration serviceability of composite floor in a suspended structure[J]. Journal of Building Structures, 2020, 41 (S2): 263-269. (in Chinese)
    [22] 高层民用建筑钢结构技术规程: JGJ 99—2015[S]. 北京: 中国建筑工业出版社, 2016.

    Technical specification for steel structure of tall building: JGJ 99—2015[S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  29
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-28
  • 修回日期:  2025-01-10
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回