Study on Mechanical Modulation of Output Characteristics in Piezoelectric Semiconductor Photovoltaic Cells
-
摘要: 压电PN结光电池的性能与其内部的势垒构型和载流子分布密切相关,因此其输出性能可以通过压电性诱导的压电势改变载流子的输运特性来调控. 然而,经典PN结模型因引入了耗尽层等假设而无法描述势垒区内多物理场与载流子的耦合作用,导致其预测结果严重失真. 因此,针对光电池的核心基本单元PN结,建立了力-电-光与载流子全域耦合作用的多场耦合模型,研究了外加机械载荷对ZnO光电池输出特性的调控机理. 结果表明:光照强度固定时,光电池的短路电流、开路电压和最大输出功率均随着压应力的增大而逐渐增加;相反,拉应力不利于光电池性能的提升. 此外,研究还发现,加载区范围大于光照区或n/p区单侧同时受到光照和压应力作用时的调控效果更佳.Abstract: The performances of piezoelectric PN junction photovoltaic cells are closely related to the internal potential barrier configurations and the distributions of carriers, and can be tuned through carrier transport characteristic changes by the piezopotentials under the piezo-effect. However, the classical PN junction model fails to describe the coupling effect between multiple physical fields and carriers in the potential barrier zone due to the depletion layer assumptions and others, and in turn gives severely distorted results. Herein a mechanics-electricity-photonics-carrier global multi-field coupling model was developed to investigate the tuning mechanism for mechanical loadings on the output characteristics of ZnO photovoltaic cells. The numerical results indicate that, the short-circuit current, the open-circuit voltage, and the maximum output power of the photovoltaic cell increase with the compressive stress under a fixed light intensity, while tensile stresses are not conducive to improving the performances of photovoltaic cells. In addition, a better tuning effect occurs with a loading region wider than the illuminated region, or with both these two external fields acting in the same side of the n/p-zone.
-
Key words:
- ZnO PN junction /
- piezoelectric effect /
- photovoltaic cell /
- numerical analysis
-
表 1 不同加载区与光照区组合作用下光电池的输出功率变化
Table 1. Normalized output power changes of the photovoltaic cell under different loadings and illuminations in different regions
x ΔPmax/% x ΔPmax/% loaded point position illuminated sub-region loaded point position illuminated sub-region 0, 1 [0, 1] 6.5 -0.5, 0.5 [-0.5, 0.5] 5.0 -1, 1 [0, 1] 4.7 -1, 1 [-0.5, 0.5] 2.2 -1, 0 [0, 1] - -0.5, 0.5 [-1, 1] - 0, 1 [-1, 1] - -1, 1 [-2, 2] - -
[1] WANG Z L, WU W, FALCONI C, et al. Piezotronics and piezo-phototronics with third-generation semiconductors[J]. MRS Bulletin, 2018, 43(12): 922-927. doi: 10.1557/mrs.2018.263 [2] 李酽, 刘敏, 刘金城, 等. 氧化锌气敏传感器性能的改善及在民航系统的应用[J]. 材料导报, 2014, 28(21): 53-56.LI Yan, LIU Min, LIU Jincheng, et al. Zinc oxide gas sensor: performance improvement and application in civil aviation system[J]. Materials Review, 2014, 28(21): 53-56. (in Chinese) [3] 蔡蔚, 孙东阳, 周铭浩, 等. 第三代宽禁带功率半导体及应用发展现状[J]. 科技导报, 2021, 39(14): 42-55.CAI Wei, SUN Dongyang, ZHOU Minghao, et al. Third generation wide bandgap power semiconductors and their applications[J]. Science & Technology Review, 2021, 39(14): 42-55. (in Chinese) [4] WU C, MEHLMAN Y, KUMAR P, et al. A phased array based on large-area electronics that operates at gigahertz frequency[J]. Nature Electronics, 2021, 4: 757-766. doi: 10.1038/s41928-021-00648-z [5] SHAISLAMOV U, KIM H, YANG J M, et al. CuO/ZnO/TiO2 photocathodes for a self-sustaining photocell: efficient solar energy conversion without external bias and under visible light[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6148-6158. doi: 10.1016/j.ijhydene.2019.12.052 [6] CONSONNI V, BRISCOE J, KÄRBER E, et al. ZnO nanowires for solar cells: a comprehensive review[J]. Nanotechnology, 2019, 30(36): 362001. doi: 10.1088/1361-6528/ab1f2e [7] WIBOWO A, MARSUDI M A, AMAL M I, et al. ZnO nanostructured materials for emerging solar cell applications[J]. RSC Advances, 2020, 10(70): 42838-42859. doi: 10.1039/D0RA07689A [8] YANG Q, GUO X, WANG W, et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect[J]. ACS Nano, 2010, 4(10): 6285-6291. doi: 10.1021/nn1022878 [9] SUN J, HUA Q, ZHOU R, et al. Piezo-phototronic effect enhanced efficient flexible perovskite solar cells[J]. ACS Nano, 2019, 13(4): 4507-4513. doi: 10.1021/acsnano.9b00125 [10] ZHU L, WANG L, PAN C, et al. Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect[J]. ACS Nano, 2017, 11(2): 1894-1900. doi: 10.1021/acsnano.6b07960 [11] ZHU L, WANG L, XUE F, et al. Piezo-phototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array[J]. Advanced Science, 2017, 4(1): 1600185. doi: 10.1002/advs.201600185 [12] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版. 北京: 电子工业出版社, 2008.LIU Enke, ZHU Bingsheng, LUO Jinsheng. The Physics of Semiconductors[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2008. (in Chinese) [13] YANG W, HONG R, YANG H, et al. A high performance piezoelectric hetero-junction based on the configuration reform on interfacial potential barrier[J]. Composite Structures, 2024, 328: 117723. doi: 10.1016/j.compstruct.2023.117723 [14] YANG W, LIU J, XU Y, et al. A full-coupling model of PN junctions based on the global-domain carrier motions with inclusion of the two metal/semiconductor contacts at endpoints[J]. Applied Mathematics and Mechanics(English Edition), 2020, 41(6): 845-858. doi: 10.1007/s10483-020-2617-9 [15] IBRAHEM M A, VERRELLI E, LAI K T, et al. Dual wavelength (ultraviolet and green) photodetectors using solution processed zinc oxide nanoparticles[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36971-36979. [16] YANG H, YANG W, HU Y. Experimental study on the influence of annealing temperature on the piezoelectric property of ZnO bulk single crystal[J]. Materials Today Communications, 2024, 38: 108251. doi: 10.1016/j.mtcomm.2024.108251 [17] XIE W, PENG W, WANG Y, et al. On the piezophototronic effect in heterojunction photodiode with type-Ⅱ energy band: theoretical model for anisotype heterojunction[J]. Physica Status Solidi (RRL): Rapid Research Letters, 2023, 17(9): 2300034. doi: 10.1002/pssr.202300034 [18] GUO M, QIN G, LU C, et al. Photoexcitation dominated electrical behaviors in a nano GaN PN junction[J]. Mechanics of Advanced Materials and Structures, 2023: 1-7. DOI: 10.1080/15376494.2023.2242832. [19] AGUILAR O, DE CASTRO S, GODOY M P F, et al. Optoelectronic characterization of Zn1-xCdxO thin films as an alternative to photonic crystals in organic solar cells[J]. Optical Materials Express, 2019, 9(9): 3638. doi: 10.1364/OME.9.003638 [20] LI S, CHENG R, MA N, et al. Analysis of piezoelectric semiconductor fibers under gradient temperature changes[J]. Applied Mathematics and Mechanics(English Edition), 2024, 45(2): 311-320. doi: 10.1007/s10483-024-3085-8 [21] YANG W, LIU J, HU Y. Mechanical tuning methodology on the barrier configuration near a piezoelectric PN interface and the regulation mechanism on Ⅰ—Ⅴ characteristics of the junction[J]. Nano Energy, 2021, 81: 105581. doi: 10.1016/j.nanoen.2020.105581 [22] 黄昆, 韩汝琦. 半导体物理基础[M]. 北京: 科学出版社, 1979.HUANG Kun, HAN Ruqi. The Physical Basis of Semiconductors[M]. Beijing: Science Press, 1979. (in Chinese) [23] YANG Y, YANG W, WANG Y, et al. A mechanically induced artificial potential barrier and its tuning mechanism on performance of piezoelectric PN junctions[J]. Nano Energy, 2022, 92: 106741. doi: 10.1016/j.nanoen.2021.106741 [24] WANG Z L, YANG R, ZHOU J, et al. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics[J]. Materials Science and Engineering: R: Reports, 2010, 70(36): 320-329. [25] ZHANG C, WANG X, CHEN W, et al. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force[J]. Smart Materials and Structures, 2017, 26(2): 025030. doi: 10.1088/1361-665X/aa542e [26] 沈亮. 新型结构异质结太阳能电池的研究[D]. 长春: 吉林大学, 2009.SHEN Liang. Study on heterojunction solar cells fabricated by novel structure[D]. Changchun: Jilin University, 2009. (in Chinese) [27] 申衍伟. ZnO异质结光电器件的制备及其性能研究[D]. 北京: 北京科技大学, 2016.SHEN Yanwei. Studies on preparation and performance characteristics of ZnO based heterojunction optoelectronic devices[D]. Beijing: University of Science and Technology Beijing, 2016. (in Chinese) [28] 高平奇, 王子磊, 林豪, 等. 太阳电池物理与器件[M]. 广州: 中山大学出版社, 2022.GAO Pingqi, WANG Zilei, LIN Hao, et al. The Physics and Devices of Solar Cells[M]. Guangzhou: Sun Yat-sen University Press, 2022. (in Chinese) [29] HAVERKORT J E M, GARNETT E C, BAKKERS E P A M. Fundamentals of the nanowire solar cell: optimization of the open circuit voltage[J]. Applied Physics Reviews, 2018, 5(3): 031106. doi: 10.1063/1.5028049 [30] CUI Y, WANG J, PLISSARD S R, et al. Efficiency enhancement of InP nanowire solar cells by surface cleaning[J]. Nano Letters, 2013, 13(9): 4113-4117. doi: 10.1021/nl4016182