[2]CHEN Y, YUAN X, HE C, et al. Mechanistic exploration of dendrite growth and inhibition for lithium metal batteries[J].Energies,2023,16(9): 3745.
|
XU R C, XIA X H, ZHANG S Z, et al. Interfacial challenges and progress for inorganic all-solid-state lithium batteries[J].Electrochimica Acta,2018,284: 177-187.
|
[3]ZHAO Y, STEIN P, BAI Y, et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries[J].Journal of Power Sources,2019,413: 259-283.
|
[4]TIAN J, CHEN Z, ZHAO Y. Review on modeling for chemo-mechanical behavior at interfaces of all-solid-state lithium-ion batteries and beyond[J].ACS Omega,2022,7(8): 6455-6462.
|
[5]LIN R, HE Y, WANG C, et al. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries[J].Nature Nanotechnology,2022,17(7): 768-776.
|
[6]GOLOZAR M, PAOLELLA A, DEMERS H, et al. In situ observation of solid electrolyte interphase evolution in a lithium metal battery[J].Communications Chemistry,2019,2: 131.
|
[7]CHANG H J, TREASE N M, ILOTT A J, et al. Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6Li/7Li NMR and SEM[J].The Journal of Physical Chemistry C,2015,119(29): 16443-16451.
|
[8]杨帆, 刘彬, 方岱宁. 基于相场方法的铁基合金高温氧化与生长应力分析[J]. 应用数学和力学, 2011,32(6): 710-717.(YANG Fan, LIU Bin, FANG Daining. Analysis on high-temperature oxidation and the growth stress of iron-based alloy using phase field method[J].Applied Mathematics and Mechanics,2011,32(6): 710-717. (in Chinese))
|
[9]LIANG L, QI Y, XUE F, et al. Nonlinear phase-field model for electrode-electrolyte interface evolution[J].Physical ReviewE:Statistical,Nonlinear,and Soft Matter Physics,2012,86: 051609.
|
[10]LIANG L, CHEN L Q. Nonlinear phase field model for electrodeposition in electrochemical systems[J].Applied Physics Letters,2014,105(26): 263903.
|
[11]CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J].Journal of Power Sources,2015,300: 376-385.
|
[12]YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J].Electrochimica Acta,2018,265: 609-619.
|
[13]SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J].Advanced Energy Materials,2021,11(10): 2003416.
|
[14]TANTRATIAN K, YAN H, ELLWOOD K, et al. Unraveling the Li penetration mechanism in polycrystalline solid electrolytes[J].Advanced Energy Materials,2021,11(13): 2003417.
|
[15]WANG Z, JIANG W, ZHAO Y, et al. Chemo-mechanical coupling phase-field modeling of lithium dendrite growth within solid electrolyte[J].Journal of Solid State Electrochemistry,2023,27(1): 245-253.
|
[16]YANG H, WANG Z. Effects of pressure, temperature, and plasticity on lithium dendrite growth in solid-state electrolytes[J].Journal of Solid State Electrochemistry,2023,27(10): 2607-2618.
|
[17]WANG X, WANG B, MEYERSON M, et al. A phase-field model integrating reaction-diffusion kinetics and elasto-plastic deformation with application to lithiated selenium-doped germanium electrodes[J].International Journal of Mechanical Sciences,2018,144: 158-171.
|
[18]MA H, XIONG X, GAO P, et al. Eigenstress model for electrochemistry of solid surfaces[J].Scientific Reports,2016,6: 26897.
|
[19]SARKAR S, AQUINO W. Changes in electrodic reaction rates due to elastic stress and stress-induced surface patterns[J].Electrochimica Acta,2013,111: 814-822.
|
[20]ALLEN S M, CAHN J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J].Acta Metallurgica,1979,27(6): 1085-1095.
|
[21]UE M, SAKAUSHI K, UOSAKI K. Basic knowledge in battery research bridging the gap between academia and industry[J].Materials Horizons,2020,7(8): 1937-1954.
|
[22]GAO L, GUO Z. Phase-field simulation of Li dendrites with multiple parameters influence[J].Computational Materials Science,2020,183: 109919.
|
[23]WANG Y, DANG D, WANG M, et al. Mechanical behavior of electroplated mossy lithium at room temperature studied by flat punch indentation[J].Applied Physics Letters,2019,115(4): 043903.
|
[24]NGUYEN Q D, OH E S, CHUNG K H. Nanomechanical properties of polymer binders for Li-ion batteries probed with colloidal probe atomic force microscopy[J].Polymer Testing,2019,76: 245-253.
|
[25]SAMSONOV G V, STRAUMANIS M E. Handbook of the physicochemical properties of the elements[J].Physics Today,1968,21(9): 97.
|
[26]NARAYAN S, ANAND L. A large deformation elastic-viscoplastic model for lithium[J].Extreme Mechanics Letters,2018,24: 21-29.
|
[27]GOLOZAR M, PAOLELLA A, DEMERS H, et al. Direct observation of lithium metal dendrites with ceramic solid electrolyte[J].Scientific Reports,2020,10(1): 18410.
|
[28]LUO S, WANG Z, LI X, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J].Nature Communications,2021,12(1): 6968.
|
[29]JOHAN M R, JIMSON S A, GHAZALI N, et al. Structural, thermal, electrical and mechanical properties of nanosilica-composite polymer electrolytes[J].International Journal of Materials Research,2011,102(4): 413-419.
|
[30]DA COSTA H M, RAMOS V D, DE OLIVEIRA M G. Degradation of polypropylene (PP) during multiple extrusions: thermal analysis, mechanical properties and analysis of variance[J].Polymer Testing,2007,26(5): 676-684.
|