留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ROE格式的物理增强图神经网络求解Euler与层流不可压NS方程

宋尚校 姜龙祥 王丽媛 褚新坤 张浩

宋尚校, 姜龙祥, 王丽媛, 褚新坤, 张浩. ROE格式的物理增强图神经网络求解Euler与层流不可压NS方程[J]. 应用数学和力学, 2025, 46(1): 55-71. doi: 10.21656/1000-0887.450098
引用本文: 宋尚校, 姜龙祥, 王丽媛, 褚新坤, 张浩. ROE格式的物理增强图神经网络求解Euler与层流不可压NS方程[J]. 应用数学和力学, 2025, 46(1): 55-71. doi: 10.21656/1000-0887.450098
SONG Shangxiao, JIANG Longxiang, WANG Liyuan, CHU Xinkun, ZHANG Hao. ROE-Scheme Physics-Augmented Graph Neural Networks in Solving Eulerian and Laminar Flow Incompressible NS Equations[J]. Applied Mathematics and Mechanics, 2025, 46(1): 55-71. doi: 10.21656/1000-0887.450098
Citation: SONG Shangxiao, JIANG Longxiang, WANG Liyuan, CHU Xinkun, ZHANG Hao. ROE-Scheme Physics-Augmented Graph Neural Networks in Solving Eulerian and Laminar Flow Incompressible NS Equations[J]. Applied Mathematics and Mechanics, 2025, 46(1): 55-71. doi: 10.21656/1000-0887.450098

ROE格式的物理增强图神经网络求解Euler与层流不可压NS方程

doi: 10.21656/1000-0887.450098
详细信息
    作者简介:

    宋尚校(1996—),男,助理工程师,硕士(E-mail: sshangxiao@126.com)

    通讯作者:

    张浩(1981—),男,副研究员,博士(通讯作者. E-mail: linusec@163.com)

  • 中图分类号: O29;O351

ROE-Scheme Physics-Augmented Graph Neural Networks in Solving Eulerian and Laminar Flow Incompressible NS Equations

  • 摘要: 近年来,融合物理信息的深度学习方法为偏微分方程的求解提供了一个新的思路. 然而,到目前为止,大多数工作在解空间存在间断的问题上的计算精度不高,时间外推能力差. 针对以上两个问题,该文提出了使用图神经网络结合流体计算领域的ROE格式融合方程或数据信息的模型——ROE-PIGNN. 数值实验表明,该模型在求解由Euler方程控制的激波管问题时,可达到与传统ROE格式相当的计算精度,并具备一定时间范围的外推能力. 最后,对由Navier-Stokes(NS)方程控制的二维圆柱绕流问题进行了求解,实验结果表明:模型可以预测后续的周期性流动,并实现对部分关键位置流动结构的更精确的复现,相比纯数据驱动,误差降低了60%.
  • 图  1  ROE-PIGNN原理图

    Figure  1.  The ROE-PIGNN schematic diagram

    图  2  GNN架构

    Figure  2.  The graph neural network architecture

    图  3  SOD激波管问题中,以最小二乘法计算PDE损失的模型获得的压强p结果

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Pressure results obtained for the model with PDE losses with the least squares method in the SOD shock tube problem

    图  4  SOD激波管问题中,以ROE格式计算PDE损失的模型获得的压强p结果

    Figure  4.  Pressure results obtained for the model with PDE losses in the ROE format for the SOD shock tube problem

    图  5  误差随时间变化的结果

    Figure  5.  Errors over time

    图  6  训练工况和时间外推下,模型计算压强场的结果

    Figure  6.  Results of the calculated pressure field for the model under training conditions and time extrapolation

    图  7  新初始场下,模型计算压强场的结果

    Figure  7.  Results of the calculated pressure field for the model with the new initial field

    图  8  误差随时间步的变化趋势

    Figure  8.  Trends of errors with the time step

    图  9  计算采用的网格的整体视图与局部视图

    Figure  9.  Overall and local views of the grid used for the calculation

    图  10  以PDE损失训练PIGNN在不同时刻的计算结果

    Figure  10.  Computational results of training PIGNN with PDE losses at different moments

    图  11  圆柱尾迹区添加数据损失的计算结果

    Figure  11.  Calculated results after adding data losses to the cylindrical wake area

    图  12  在少量的几个时刻添加数据损失的计算结果

    Figure  12.  Calculated results with data losses added at a small number of moments

    图  13  纯数据驱动和数据加方程驱动模型计算的尾迹区平均误差趋势

    Figure  13.  Trends of mean errors in the tailrace area calculated by purely data-driven and data-plus-equation-driven models

  • [1] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378 : 686-707. doi: 10.1016/j.jcp.2018.10.045
    [2] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3 : 422-440. doi: 10.1038/s42254-021-00314-5
    [3] 王江, 陈文. 基于组合神经网络的时间分数阶扩散方程计算方法[J]. 应用数学和力学, 2019, 40 (7): 741-750. doi: 10.21656/1000-0887.390288

    WANG Jiang, CHEN Wen. A combined artificial neural network method for solving time fractional diffusion equations[J]. Applied Mathematics and Mechanics, 2019, 40 (7): 741-750. (in Chinese) doi: 10.21656/1000-0887.390288
    [4] 林云云, 郑素佩, 封建湖, 等. 间断问题扩散正则化的PINN反问题求解算法[J]. 应用数学和力学, 2023, 44 (1): 112-122. doi: 10.21656/1000-0887.430010

    LIN Yunyun, ZHENG Supei, FENG Jianhu, et al. Diffusive regularization inverse PINN solutions to discontinuous problems[J]. Applied Mathematics and Mechanics, 2023, 44 (1): 112-122. (in Chinese) doi: 10.21656/1000-0887.430010
    [5] DAFERMOS C M. Hyperbolic Conservation Laws in Continuum Physics[M]. Berlin: Springer, 2016.
    [6] MAO Z, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360 : 112789. doi: 10.1016/j.cma.2019.112789
    [7] LEVEQUE R J. Finite-Volume Methods for Hyperbolic Problems[M]. Cambridge: Cambridge University Press, 2002.
    [8] GODLEWSKI E, RAVIART P A. Numerical Approximation of Hyperbolic Systems of Conservation Laws[M]. New York: Springer, 1996.
    [9] COCKBURN B, KARNIADAKIS G E, SHU C W. Discontinuous Galerkin Methods[M]. Berlin: Springer, 2000.
    [10] MAGIERA J, RAY D, HESTHAVEN J S, et al. Constraint-aware neural networks for Riemann problems[J]. Journal of Computational Physics, 2020, 409 : 109345. doi: 10.1016/j.jcp.2020.109345
    [11] SCHWANDER L, RAY D, HESTHAVEN J S. Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks[J]. Journal of Computational Physics, 2021, 431 : 110144. doi: 10.1016/j.jcp.2021.110144
    [12] BEZGIN D A, SCHMIDT S J, ADAMS N A. A data-driven physics-informed finite-volume scheme for nonclassical undercompressive shocks[J]. Journal of Computational Physics, 2021, 437 : 110324. doi: 10.1016/j.jcp.2021.110324
    [13] BEZGIN D A, SCHMIDT S J, ADAMS N A. WENO3-NN: a maximum-order three-point data-driven weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2022, 452 : 110920. doi: 10.1016/j.jcp.2021.110920
    [14] LIU L, LIU S, XIE H, et al. Discontinuity computing using physics-informed neural networks[J]. Journal of Scientific Computing, 2024, 98 : 22. doi: 10.1007/s10915-023-02412-1
    [15] CAO W, SONG J, ZHANG W. A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation[J]. Physics of Fluids, 2024, 36 (2): 027134. doi: 10.1063/5.0188665
    [16] HUANG H, LIU Y, YANG V. Neural networks with inputs based on domain of dependence and A converging sequence for solving conservation laws, part Ⅰ: 1D Riemann problems[J/OL]. 2021[2024-07-08]. https://arxiv.org/abs/2109.09316.
    [17] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43 (2): 357-372. doi: 10.1016/0021-9991(81)90128-5
    [18] GODUNOV S K. A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations[J]. Mathematics of the USSR-Sbornik, 1959, 47 : 271-306.
    [19] VAN LEER B. Towards the Ultimate Conservative Difference Scheme I. The Quest of Monotonicity[M]. Berlin: Heidelberg, 1973.
    [20] VAN LEER B. Towards the ultimate conservative difference scheme[J]. Journal of Computational Physics, 1997, 135 (2): 229-248. doi: 10.1006/jcph.1997.5704
    [21] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ[J]. Journal of Computational Physics, 1997, 131 (1): 3-47. doi: 10.1006/jcph.1996.5632
    [22] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115 (1): 200-212. doi: 10.1006/jcph.1994.1187
    [23] LIU Y, SHU C W, TADMOR E, et al. Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction[J]. SIAM Journal on Numerical Analysis, 2007, 45 (6): 2442-2467. doi: 10.1137/060666974
    [24] LIU Y, SHU C W, TADMOR E, et al. Non-oscillatory hierarchical reconstruction for central and finite volume schemes[J]. Communications in Computational Physics, 2007, 2 (5): 933-963.
    [25] XU Z, LIU Y, SHU C W. Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells[J]. Journal of Computational Physics, 2009, 228 (6): 2194-2212. doi: 10.1016/j.jcp.2008.11.025
    [26] YANG V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[J]. Proceedings of the Combustion Institute, 2000, 28 (1): 925-942. doi: 10.1016/S0082-0784(00)80299-4
    [27] WANG X, YANG V. Supercritical mixing and combustion of liquid-oxygen/kerosene bi-swirl injectors[J]. Journal of Propulsion and Power, 2016, 33 (2): 316-322.
    [28] UNNIKRISHNAN U, HUO H, WANG X, et al. Subgrid scale modeling considerations for large eddy simulation of supercritical turbulent mixing and combustion[J]. Physics of Fluids, 2021, 33 (7): 075112. doi: 10.1063/5.0055751
    [29] TEYSSIER R, COMMERÇON B. Numerical methods for simulating star formation[J]. Frontiers in Astronomy and Space Sciences, 2019, 6 : 51. doi: 10.3389/fspas.2019.00051
    [30] BAR-SINAI Y, HOYER S, HICKEY J, et al. Learning data-driven discretizations for partial differential equations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (31): 15344-15349.
    [31] 高普阳, 赵子桐, 杨扬. 基于卷积神经网络模型数值求解双曲型偏微分方程的研究[J]. 应用数学和力学, 2021, 42 (9): 932-947. doi: 10.21656/1000-0887.420050

    GAO Puyang, ZHAO Zitong, YANG Yang. Study on numerical solutions to hyperbolic partial differential equations based on the convolutional neural network model[J]. Applied Mathematics and Mechanics, 2021, 42 (9): 932-947. (in Chinese) doi: 10.21656/1000-0887.420050
    [32] JIANG L, WANG L, CHU X, et al. PhyGNNet: solving spatiotemporal PDEs with physics-informed graph neural network[C]//Proceedings of the 2023 2 nd Asia Conference on Algorithms, Computing and Machine Learning. Shanghai: ACM, 2023: 143-147.
    [33] ZHANG H, JIANG L, CHU X, et al. Combining physics-informed graph neural network and finite difference for solving forward and inverse spatiotemporal PDEs[J/OL]. 2024[2024-07-08]. https://arxiv.org/abs/2405.20000.
    [34] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[J/OL]. 2017[2024-07-08]. https://arxiv.org/abs/1704.01212v2.
    [35] SANCHEZ-GONZALEZ A, GODWIN J, PFAFF T, et al. Learning to simulate complex physics with graph networks[C]//Proceedings of the 37 th International Conference on Machine Learning. 2020: 8459-468.
  • 加载中
图(13)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 修回日期:  2024-07-08
  • 刊出日期:  2025-01-01

目录

    /

    返回文章
    返回