留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温冷冻下颅脑热-力耦合分析

陶泽 苏丽君 刘少宝

陶泽, 苏丽君, 刘少宝. 低温冷冻下颅脑热-力耦合分析[J]. 应用数学和力学, 2024, 45(6): 710-718. doi: 10.21656/1000-0887.450118
引用本文: 陶泽, 苏丽君, 刘少宝. 低温冷冻下颅脑热-力耦合分析[J]. 应用数学和力学, 2024, 45(6): 710-718. doi: 10.21656/1000-0887.450118
TAO Ze, SU Lijun, LIU Shaobao. Thermo-Mechanical Analysis of Brain Tissue During Freezing[J]. Applied Mathematics and Mechanics, 2024, 45(6): 710-718. doi: 10.21656/1000-0887.450118
Citation: TAO Ze, SU Lijun, LIU Shaobao. Thermo-Mechanical Analysis of Brain Tissue During Freezing[J]. Applied Mathematics and Mechanics, 2024, 45(6): 710-718. doi: 10.21656/1000-0887.450118

低温冷冻下颅脑热-力耦合分析

doi: 10.21656/1000-0887.450118
(我刊编委刘少宝来稿)
基金项目: 

国家自然科学基金 12032010

国家自然科学基金 11902155

详细信息
    作者简介:

    陶泽(1997—),男,博士(E-mail: ztao@nuaa.edu.cn)

    通讯作者:

    苏丽君(1994—),女,博士(通讯作者. E-mail: ljsu@nuaa.edu.cn)

    刘少宝(1988—),男,副研究员,博士,硕士生导师(通讯作者. E-mail: sbliu@nuaa.edu.cn)

  • 中图分类号: O343

Thermo-Mechanical Analysis of Brain Tissue During Freezing

(Contributed by LIU Shaobao, M.AMM Editorial Board)
  • 摘要:

    虽然大脑是人体最重要的器官,但其在低温冷冻过程中的热-力耦合机理仍不明晰. 该文考虑颅脑特殊形状、多孔弹性、脑脊液流动、颅骨约束以及冻胀效应,建立脑组织低温冷冻热-力耦合模型,通过分析冷冻过程中的温度场、相场和脑脊液冻胀产生的压力场,发现在凝固过程中脑脊液温度保持不变,而脑组织内部最大温差可达20 K. 固-液相界面厚度约0.3 mm,推进速度约0.09 mm/s. 冻胀产生的脑组织最大位移(~0.12 mm)发生在靠近头盖骨处. 固液界面处压力梯度高达500 MPa/mm,而固体和脑脊液内部压力几乎不变. 本研究可为人类大脑的低温冷冻保存策略及脑防护提供理论支撑.

    1)  (我刊编委刘少宝来稿)
  • 图  1  颅脑简化模型

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Idealized modeling of the human brain

    图  2  脑组织低温冷冻过程中的温度分布

    Figure  2.  Temperature distributions in the brain tissue during freezing

    图  3  脑组织低温冷冻过程中的相场

    Figure  3.  The phase field in the brain tissue during freezing

    图  4  脑组织冷冻中的位移场

    Figure  4.  The displacement field in the brain tissue during freezing

    图  5  脑组织低温冷冻过程中的压力分布

    Figure  5.  The pressure distribution in the brain tissue during freezing

    表  1  脑组织物理参数取值

    Table  1.   Values of brain physical parameters

    physical parameter value range reference value
    size riro 5 cm
    thermal conductivity of matrix λm grey matter 0.57 W/(m·K)[22]
    white matter 0.50 W/(m·K)[22]
    brain tissue 0.66 W/(m·K)[23]
    0.53 W/(m·K)
    thermal conductivity of water λw cerebrospinal fluid 0.62 W/(m·K)[22]
    plasma 0.63 W/(m·K)[22]
    blood 0.63 W/(m·K)[23]
    water 0.59 W/(m·K)[24]
    0.60 W/(m·K)
    thermal conductivity of ice λi ice 2.1 W/(m·K)[25] 2.1 W/(m·K)
    specific heat capacity of matrix cm grey matter 3.7 kJ/(kg·K)[22]
    white matter 3.6 kJ/(kg·K)[22]
    3.7 kJ/(kg·K)
    specific heat capacity of water cw cerebrospinal fluid 4.2 kJ/(kg·K)[22]
    blood 3.6 W/(m3·K)[23]
    water 4.2 kJ/(kg·K)[26]
    4.2 kJ/(kg·K)
    specific heat capacity of ice ci ice 2.1 kJ/(kg·K)[25] 2.1 kJ/(kg·K)
    density of matrix ρm grey matter 1 038 g/cm3[22]
    white matter 1 039 g/cm3[22]
    1.038 g/cm3
    density of water ρw cerebrospinal fluid 1 007 kg/m3[22]
    blood 1 050 kg/m3[23]
    1 007 kg/m3
    density of ice ρi ice 917 kg/m3[27] 900 kg/cm3
    Young’s modulus of brain Em 338.15 Pa[28] 338.15 Pa
    Young’s modulus of ice Ei 8 GPa[29] 8 GPa
    bulk modulus of water Kw 2 GPa 2 GPa
    Poisson’s ratio of brain μm 0.3[28] 0.3
    phase transition temperature of water Tf 273 K[30] 273 K
    latent heat of phase change L 334 kJ/kg[31] 334 kJ/kg
    environment temperature Te 253 K[32] 253 K
    initial temperature Ti 293 K
    saturation capacity θs 0.75~0.95[6] 0.9
    下载: 导出CSV
  • [1] ONODY R N. Criptobiose: um Vermeressuscitadepois de 46.000 Anos[M]. São Carlos: Universidade de São Paulo, 2023.
    [2] MORRIS G J, ACTON E, MURRAY B J, et al. Freezing injury: the special case of the sperm cell[J]. Cryobiology, 2012, 64(2): 71-80. doi: 10.1016/j.cryobiol.2011.12.002
    [3] JANG T H, PARK S C, YANG J H, et al. Cryopreservation and its clinical applications[J]. Integrative Medicine Research, 2017, 6(1): 12-18. doi: 10.1016/j.imr.2016.12.001
    [4] KARLSSON J O, TONER M. Long-term storage of tissues by cryopreservation: critical issues[J]. Biomaterials, 1996, 17(3): 243-256. doi: 10.1016/0142-9612(96)85562-1
    [5] ZHANG M, LI F, DIAO X, et al. Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles[J]. Meat Science, 2017, 133: 10-18. doi: 10.1016/j.meatsci.2017.05.019
    [6] KUMARASAMI R, VERMA R, PANDURANGAN K, et al. A technology platform for standardized cryoprotection and freezing of large-volume brain tissues for high-resolution histology[J]. Frontiers in Neuroanatomy, 2023, 17: 1292655. doi: 10.3389/fnana.2023.1292655
    [7] CONAWAY R M. Method for preservation and storage of viable biological materials at cryogenic temperatures[P]. 1987-08-25.
    [8] HUNT C J. Technical considerations in the freezing, low-temperature storage and thawing of stem cells for cellular therapies[J]. Transfusion Medicine and Hemotherapy, 2019, 46(3): 134-150. doi: 10.1159/000497289
    [9] KUMAR R, MOHANARAO G J, ATREJA A S K. Freeze-thaw induced genotoxicity in buffalo (bubalus bubalis) spermatozoa in relation to total antioxidant status[J]. Molecular Biology Reports, 2011, 38: 1499-1506. doi: 10.1007/s11033-010-0257-1
    [10] LEE R E, ALLENSPACH A L, COLLINS S D. Ultrastructural effects of lethal freezing on brain, muscle and Malpighian tubules from freeze-tolerant larvae of the gall fly, Eurostasolidaginis[J]. Journal of Insect Physiology, 1997, 43(1): 39-45. doi: 10.1016/S0022-1910(96)00073-X
    [11] PEGG D E. The relevance of ice crystal formation for the cryopreservation of tissues and organs[J]. Cryobiology, 2010, 60(3): S36-S44. doi: 10.1016/j.cryobiol.2010.02.003
    [12] KLOCKE S, BVNDGEN N, KÖSTER F, et al. Slow-freezing versus vitrification for human ovarian tissue cryopreservation[J]. Archives of Gynecology and Obstetrics, 2015, 291: 419-426. doi: 10.1007/s00404-014-3390-6
    [13] NICOLAS G. Advantages of fast-freeze fixation followed by freeze-substitution for the preservation of cell integrity[J]. Journal of Electron Microscopy Technique, 1991, 18(4): 395-405. doi: 10.1002/jemt.1060180408
    [14] DE GRAAF I, VAN DER VOORT D, et al. Increased post-thaw viability and phase Ⅰ and Ⅱ biotransformation activity in cryopreserved rat liver slices after improvement of a fast-freezing method[J]. Drug Metabolism and Disposition, 2000, 28(9): 1100-1106.
    [15] HUNT C J. Cryopreservation: vitrification and controlled rate cooling[J]. Methods in Molecular Biology, 2017, 1590: 41-77.
    [16] PINSKIY V, TOLPYGO A S, JONES J, et al. A low-cost technique to cryo-protect and freeze rodent brains, precisely aligned to stereotaxic coordinates for whole-brain cryosectioning[J]. Journal of Neuroscience Methods, 2013, 218(2): 206-213. doi: 10.1016/j.jneumeth.2013.03.004
    [17] ROSENE D L, ROY N J, DAVIS B J. A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact[J]. Journal of Histochemistry & Cytochemistry, 1986, 34(10): 1301-1315.
    [18] CHOWDHURY F, HUANG B, WANG N. Cytoskeletal prestress: the cellular hallmark in mechanobiology and mechanomedicine[J]. Cytoskeleton, 2021, 78(6): 249-276. doi: 10.1002/cm.21658
    [19] ZHANG J, REINHART-KING C A. Targeting tissue stiffness in metastasis: mechanomedicine improves cancer therapy[J]. Cancer Cell, 2020, 37(6): 754-755. doi: 10.1016/j.ccell.2020.05.011
    [20] 季葆华. 生命系统中的力化耦合定量机制与力医学路径初探[J]. 医用生物力学, 2023, 38(3): 433-450. https://www.cnki.com.cn/Article/CJFDTOTAL-YISX202303003.htm

    JI Baohua. Mechano-chemical coupling in living organisms and possible road map of mechanomedicine[J]. Journal of Medical Biomechanics, 2023, 38(3): 433-450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YISX202303003.htm
    [21] 郭卉, 贺昱昇, 刘梦洁, 等. 肿瘤力医学[J]. 中华肿瘤杂志, 2024, 46(6): 536-548.

    GUO Hui, HE Yusheng, LIU Mengjie, et al. Tumor mechanomedicine[J]. Chinese Journal of Oncology, 2024, 46(6): 536-548. (in Chinese)
    [22] SCHOONEVELDT G, TREFNÁ H D, PERSSON M, et al. Hyperthermia treatment planning including convective flow in cerebrospinal fluid for brain tumour hyperthermia treatment using a novel dedicated paediatric brain applicator[J]. Cancers, 2019, 11(8): 1183. doi: 10.3390/cancers11081183
    [23] PONDER E. The coefficient of thermal conductivity of blood and of various tissues[J]. The Journal of General Physiology, 1962, 45(3): 545-551. doi: 10.1085/jgp.45.3.545
    [24] KELL G, WHALLEY E. Reanalysis of the density of liquid water in the range 0~150 ℃ and 0~1 kbar[J]. The Journal of Chemical Physics, 1975, 62(9): 3496-3503. doi: 10.1063/1.430986
    [25] MYERS T, LOW J. An approximate mathematical model for solidification of a flowing liquid in a microchannel[J]. Microfluidics and Nanofluidics, 2011, 11: 417-428. doi: 10.1007/s10404-011-0807-4
    [26] MANYA J J, ANTAL JR M J, KINOSHITA C K, et al. Specific heat capacity of pure water at 4. 0 MPa between 298. 15 and 465. 65 K[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6470-6484.
    [27] PUSTOGVAR A, KULYAKHTIN A. Sea ice density measurements. Methods and uncertainties[J]. Cold Regions Science and Technology, 2016, 131: 46-52. doi: 10.1016/j.coldregions.2016.09.001
    [28] SU L, WANG M, YIN J, et al. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale[J]. Acta Biomaterialia, 2023, 155: 423-435. doi: 10.1016/j.actbio.2022.11.009
    [29] GOW A J, UEDA H T, GOVONI J W, et al. Temperature and structure dependence of the flexural strength and modulus of freshwater model ice: CRREL Rept 88-6[R]. 1988.
    [30] WAN X, LIU E, QIU E. Study on ice nucleation temperature and water freezing in saline soils[J]. Permafrost and Periglacial Processes, 2021, 32(1): 119-138. doi: 10.1002/ppp.2081
    [31] JAIN A, MIGLANI A, HUANG Y, et al. Ice formation modes during flow freezing in a small cylindrical channel[J]. International Journal of Heat and Mass Transfer, 2019, 128: 836-848. doi: 10.1016/j.ijheatmasstransfer.2018.08.051
    [32] SCHÄFER A T, KAUFMANN J D. What happens in freezing bodies? Experimental study of histological tissue change caused by freezing injuries[J]. Forensic Science International, 1999, 102(2/3): 149-158.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  46
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-25
  • 修回日期:  2024-05-15
  • 刊出日期:  2024-06-01

目录

    /

    返回文章
    返回