留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PINN方法的KdV类方程新孤子解的研究

邱天威 魏光美 宋禹欣 王振

邱天威, 魏光美, 宋禹欣, 王振. 基于PINN方法的KdV类方程新孤子解的研究[J]. 应用数学和力学, 2025, 46(1): 105-113. doi: 10.21656/1000-0887.450122
引用本文: 邱天威, 魏光美, 宋禹欣, 王振. 基于PINN方法的KdV类方程新孤子解的研究[J]. 应用数学和力学, 2025, 46(1): 105-113. doi: 10.21656/1000-0887.450122
QIU Tianwei, WEI Guangmei, SONG Yuxin, WANG Zhen. Novel Soliton Solutions to KdV-Type Equations Based on Physics-Informed Neural Networks[J]. Applied Mathematics and Mechanics, 2025, 46(1): 105-113. doi: 10.21656/1000-0887.450122
Citation: QIU Tianwei, WEI Guangmei, SONG Yuxin, WANG Zhen. Novel Soliton Solutions to KdV-Type Equations Based on Physics-Informed Neural Networks[J]. Applied Mathematics and Mechanics, 2025, 46(1): 105-113. doi: 10.21656/1000-0887.450122

基于PINN方法的KdV类方程新孤子解的研究

doi: 10.21656/1000-0887.450122
基金项目: 

国家自然科学基金(面上项目) 52171251

详细信息
    作者简介:

    邱天威(2002—),男,硕士生(E-mail: qiutw2002@163.com)

    王振(1981—),男,教授,博士,博士生导师(E-mail: wangzmath@163.com)

    通讯作者:

    魏光美(1967—),女,副教授,博士,硕士生导师(通讯作者. E-mail: gmwei@buaa.edu.cn)

  • 中图分类号: O241

Novel Soliton Solutions to KdV-Type Equations Based on Physics-Informed Neural Networks

  • 摘要: 该文采用物理信息神经网络(physics-informed neural network,PINN)方法结合广义Miura变换,深入研究了三个KdV类方程,获得了一系列新的孤子解. 具体而言,研究成果包括:基于改进的PINN方法,获得了mKdV方程的扭结-钟形解的解析形式;通过Miura变换,发现了KdV方程的新单孤子解;结合广义Miura变换与PINN方法,预测出非线性较强的KdV类方程的暗孤子解. 通过将PINN方法的数值结果与理论分析结果进行对比可以得知,基于广义Miura变换的PINN方法是发现偏微分方程新数值解的有效途径,同时对理论研究具有重要的启示意义.
  • 图  1  mKdV方程的扭结-钟形解(23)

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Kink-bell solution (23) to the mKdV equation

    图  2  t=0时刻,mKdV方程的解(33)

    Figure  2.  Solution (33) to the mKdV equation for t=0

    图  3  KdV方程的类单孤子解与单孤子解的对比

    Figure  3.  The comparison between the single-soliton-like solution and the single-soliton solution of the KdV equation

    图  4  方程(37)的数值解和误差

    Figure  4.  Numerical solutions and errors of the eq. (37)

    图  5  方程(38)的预测解、精确解和误差

    Figure  5.  The predicted solutions, exact solutions and errors of eq. (38)

  • [1] 郭柏灵. 非线性演化方程[M]. 上海: 上海科技教育出版社, 1995.

    GUO Boling. Nonlinear Evolution Equations[M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1995. (in Chinese)
    [2] 陈登远. 孤子引论[M]. 北京: 科学出版社, 2006.

    CHEN Dengyuan. Introduction to Solitons[M]. Beijing: Science Press, 2006. (in Chinese)
    [3] 王明亮. 非线性发展方程与孤立子[M]. 兰州: 兰州大学出版社, 1990.

    WANG Mingliang. Nonlinear Evolution Equations and Solitons[M]. Lanzhou: Lanzhou University Press, 1990. (in Chinese)
    [4] GUO Y, PU X. KdV limit of the Euler-Poisson system[J]. Archive for Rational Mechanics and Analysis, 2014, 211(2): 673-710. doi: 10.1007/s00205-013-0683-z
    [5] RONG R, PENG Y. KdV-type equation limit for ion dynamics system[J]. Communications on Pure and Applied Analysis, 2021, 20(4): 1699-1719. doi: 10.3934/cpaa.2021037
    [6] 范恩贵, 张鸿庆. 非线性孤子方程的齐次平衡法[J]. 物理学报, 1998, 47(3): 353-362.

    FAN Engui, ZHANG Hongqing. The homogeneous balance method for solving nonlinear soliton equations[J]. Acta Physica Sinica, 1998, 47(3): 353-362. (in Chinese)
    [7] WEISS J. The painlevé property for partial differential equations Ⅱ: Bäcklund transformation, Lax pairs, and the Schwarzian derivative[J]. Journal of Mathematical Physics, 1983, 24(6): 1405-1413. doi: 10.1063/1.525875
    [8] YANG J. Nonlinear Waves in Integrable and Nonintegrable Systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2010.
    [9] ROGERS C, SCHIEF W K. Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory[M]. New York: Cambridge University Press, 2002.
    [10] HIROTA R. Exact solution of the korteweg-de vries equation for multiple collisions of solitons[J]. Physical Review Letters, 1971, 27(18): 1192-1194. doi: 10.1103/PhysRevLett.27.1192
    [11] BLUMAN G W, CHEVIAKOV A F. Applications of Symmetry Methods to Partial Differential Equations[M]. New York: Springer, 2010.
    [12] MATVEEV V B, SALL' M A. Scattering of solitons in the formalism of the Darboux transform[J]. Journal of Soviet Mathematics, 1986, 34(5): 1983-1987. doi: 10.1007/BF01095106
    [13] MIURA R M. Korteweg-de Vries equation and generalizations Ⅰ: a remarkable explicit nonlinear transformation[J]. Journal of Mathematical Physics, 1968, 9(8): 1202-1204. doi: 10.1063/1.1664700
    [14] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [15] CUOMO S, DI COLA V S, GIAMPAOLO F, et al. Scientific machine learning through physics-informed neural networks: where we are and what's next[J]. Journal of Scientific Computing, 2022, 92(3): 88. doi: 10.1007/s10915-022-01939-z
    [16] LIN S, CHEN Y. Physics-informed neural network methods based on Miura transformations and discovery of new localized wave solutions[J]. Physica D: Nonlinear Phenomena, 2023, 445: 133629. doi: 10.1016/j.physd.2022.133629
    [17] 石玉仁, 张娟, 杨红娟, 等. mKdV方程的双扭结单孤子及其稳定性研究[J]. 物理学报, 2010, 59(11): 7564-7569. doi: 10.7498/aps.59.7564

    SHI Yuren, ZHANG Juan, YANG Hongjuan, et al. Single soliton of double kinks of the mKdV equation and its stability[J]. Acta Physica Sinica, 2010, 59(11): 7564-7569. (in Chinese) doi: 10.7498/aps.59.7564
    [18] 徐传友. 非线性偏微分方程之间的Miura变换和精确解[J]. 阜阳师范学院学报(自然科学版), 2008, 25(3): 1-4. doi: 10.3969/j.issn.1004-4329.2008.03.001

    XU Chuanyou. The miura transformation between nonlinear partial differential equations and it's exact solutions[J]. Journal of Fuyang Teachers College (Natural Science), 2008, 25(3): 1-4. (in Chinese) doi: 10.3969/j.issn.1004-4329.2008.03.001
    [19] FOKAS A S. A symmetry approach to exactly solvable evolution equations[J]. Journal of Mathematical Physics, 1980, 21(6): 1318-1325. doi: 10.1063/1.524581
  • 加载中
图(5)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  21
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 修回日期:  2024-06-04
  • 刊出日期:  2025-01-01

目录

    /

    返回文章
    返回