留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

裂纹-夹杂问题分析的本征计算模型及其数值模拟

郭钊 任晓丹 和东宏

郭钊, 任晓丹, 和东宏. 裂纹-夹杂问题分析的本征计算模型及其数值模拟[J]. 应用数学和力学, 2025, 46(3): 371-381. doi: 10.21656/1000-0887.450134
引用本文: 郭钊, 任晓丹, 和东宏. 裂纹-夹杂问题分析的本征计算模型及其数值模拟[J]. 应用数学和力学, 2025, 46(3): 371-381. doi: 10.21656/1000-0887.450134
GUO Zhao, REN Xiaodan, HE Donghong. Numerical Modeling for the Analysis of Crack-Inclusion Problems by the Eigen Iterative Computational Model[J]. Applied Mathematics and Mechanics, 2025, 46(3): 371-381. doi: 10.21656/1000-0887.450134
Citation: GUO Zhao, REN Xiaodan, HE Donghong. Numerical Modeling for the Analysis of Crack-Inclusion Problems by the Eigen Iterative Computational Model[J]. Applied Mathematics and Mechanics, 2025, 46(3): 371-381. doi: 10.21656/1000-0887.450134

裂纹-夹杂问题分析的本征计算模型及其数值模拟

doi: 10.21656/1000-0887.450134
基金项目: 

国家自然科学基金(12162015;12362018);江西省自然科学基金(面上项目)(20202BABL201015)

详细信息
    作者简介:

    郭钊(1986—),男,教授,博士,硕士生导师,江西省赣鄱俊才高校青年领军人才(江西省青年井冈学者)(通讯作者. E-mail: guozhao@shu.edu.cn).

    通讯作者:

    郭钊(1986—),男,教授,博士,硕士生导师,江西省赣鄱俊才高校青年领军人才(江西省青年井冈学者)(通讯作者. E-mail: guozhao@shu.edu.cn).

  • 中图分类号: O341

Numerical Modeling for the Analysis of Crack-Inclusion Problems by the Eigen Iterative Computational Model

Funds: 

The National Science Foundation of China(12162015;12362018)

  • 摘要: 针对固体材料含有“裂纹夹杂”的数值模拟问题,将Eshelby本征应变和等效夹杂替换理论引入边界积分方程中,建立了本征裂纹张开位移(crack opening displacement, COD)和本征应变边界积分方程的计算模型及数值实现,以解决“裂纹夹杂”的相互作用机制.在一定条件下,异性夹杂可以作为一般的夹杂问题处理,物理上可令夹杂的弹性模量为零,则该夹杂就“退化”为孔洞;同时,在几何上可令其最小尺寸方向上的尺寸为零,即可进一步“退化”为裂纹,因而裂纹可被认为是弹性模量为零的一种特殊夹杂.采用边界积分方程的离散形式对裂纹和夹杂问题进行了数值验证,其中裂纹和夹杂的边界分别采用Gauss配点法和边界点法进行离散,进行了应力分析,研究了裂纹与夹杂的相互作用.数值算例验证了本征计算模型处理“裂纹夹杂”问题的正确性和方法的可行性,也表现出较高的计算精度,为该计算模型的大规模数值分析奠定了理论基础.
  • [2]WU J Y, XU S L. An augmented multicrack elastoplastic damage model for tensile cracking[J].International Journal of Solids and Structures,2011,48(18): 2511-2528.
    DOLADO J S, VAN BREUGEL K. Recent advances in modeling for cementitious materials[J].Cement and Concrete Research,2011,41(7): 711-726.
    [3]XIAO H T, YUE Z Q. A three-dimensional displacement discontinuity method for crack problems in layered rocks[J].International Journal of Rock Mechanics and Mining Sciences,2011,48(3): 412-420.
    [4]ZHOU X P, LI X H. Constitutive relationship of brittle rock subjected to dynamic uniaxial tensile loads with microcrack interaction effects[J].Theoretical and Applied Fracture Mechanics,2009,52(3): 140-145.
    [5]CHMELIK F, TRNIK A, IGOR S, et al. Creation of microcracks in porcelain during firing[J].Journal of the European Ceramic Society,2011,31(13): 2205-2209.
    [6]PINEAU A, TANGUY B. Advances in cleavage fracture modelling in steels: micromechanical, numerical and multiscale aspects[J].Comptes Rendus Physique,2010,11(3/4): 316-325.
    [7]SOBELMAN O S, GIBELING J C, STOVER S M, et al. Do microcracks decrease or increase fatigue resistance in cortical bone?[J].Journal of Biomechanics,2004,37(9): 1295-1303.
    [8]SHI D L, FENG X Q, JIANG H, et al. Multiscale analysis of fracture of carbon nanotubes embedded in composites[J].International Journal of Fracture,2005,134(3): 369-386.
    [9]张国瑞. 有限元法[M]. 北京: 机械工业出版社, 1991. (ZHANG Guorui.Finite Element Method[M]. Beijing: China Machine Press, 1991. (in Chinese))
    [10]杨庆生, 杨卫. 断裂过程的有限元模拟[J]. 计算力学学报, 1997,14(4): 407-412. (YANG Qingsheng, YANG wei. Finite element simulation of fracture process[J].Chinese Journal of Computational Mechanics,1997,14(4): 407-412. (in Chinese))
    [11]ALIABADI M H. Boundary element formulations in fracture mechanics[J].Applied Mechanics Reviews,1997,50(2): 83-96.
    [12]ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J].Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences,1957,241(1226): 376-396.
    [13]ESHELBY J D. The elastic field outside an ellipsoidal inclusion[J].Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences,1959,252(1271): 561-569.
    [14]DONG C Y, CHEUNG Y K, LO S H. A regularized domain integral formulation for inclusion problems of various shapes by equivalent inclusion method[J].Computer Methods in Applied Mechanics and Engineering,2002,191(31): 3411-3421.
    [15]DONG C Y, LEE K. Boundary element analysis of infinite anisotropic elastic medium containing inclusions and cracks[J].Engineering Analysis With Boundary Elements,2005,29(6): 562-569.
    [16]DONG C Y. Effective elastic properties of doubly periodic array of inclusions of various shapes by the boundary element method[J].International Journal of Solids and Structures,2006,43(25/26): 7919-7938.
    [17]LIU Y J, NISHIMURA N, OTANI Y, et al. A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model[J].Journal of Applied Mechanics,2005,72(1): 115-128.
    [18]马杭, 夏利伟, 秦庆华. 短纤维复合材料的本征应变边界积分方程计算模型[J]. 应用数学和力学, 2008,29(6): 687-695. (MA Hang, XIA Liwei, QIN Qinghua. Computational model for short-fiber composites with eigen-strain formulation of boundary integral equations[J].Applied Mathematics and Mechanics,2008,29(6): 687-695. (in Chinese))
    [19]MA H, YAN C, QIN Q. Eigenstrain formulation of boundary integral equations for modeling particle-reinforced composites[J].Engineering Analysis With Boundary Elements,2008,33: 410-419.
    [20]MA H, FANG J B, QIN Q H. Simulation of ellipsoidal particle-reinforced materials with eigenstrain formulation of 3D BIE[J].Advances in Engineering Software,2011,42(10): 750-759.
    [21]马杭, 郭钊, 秦庆华. 二维多项式本征应变边界积分方程及其数值验证[J]. 应用数学和力学, 2011,32(5): 522-532. (MA Hang, GUO Zhao, QIN Qinghua. Two-dimensional polynomial eigenstrain formulation of boundary integral equation with numerical verification[J].Applied Mathematics and Mechanics,2011,32(5): 522-532. (in Chinese))
    [22]GUO Z, MA H. Solution of stress intensity factors of multiple cracks in plane elasticity with eigen COD formulation of boundary integral equation[J].Journal of Shanghai University (English Edition), 2011,15(3): 173-179.
    [23]郭钊, 郭子涛, 易玲艳. 多裂纹问题计算分析的本征COD边界积分方程方法[J]. 应用数学和力学, 2019,40(2): 200-209. (GUO Zhao, GUO Zitao, YI Lingyan. Analysis of multicrack problems with eigen COD boundary integral equations[J].Applied Mathematics and Mechanics,2019,40(2): 200-209. (in Chinese))
    [24]中国航空研究院. 应力强度因子手册[M]. 北京: 科学出版社, 1981. (Chinese Aeronautical Establishment.Handbook of Stress Intensity Factor[M]. Beijing: Science Press, 1981. (in Chinese))
    [25]ERDOGAN F, GUPTA G D, RATWANI M. Interaction between a circular inclusion and an arbitrarily oriented crack[J].Journal of Applied Mechanics,1974,41(4): 1007-1013.
    [26]TANG R, WANG Y. On the problem of crack system with an elliptic hole[J].Acta Mechanica Sinica,1986,2(1): 47-57.
    [27]HAN X L, WANG Z Q, Elastic fields of interacting elliptic inhomogeneities[J].International Journal of Solids and Structures,1999,36: 4523-4541
    [28]MA H, QIN Q H. Solving potential problems by a boundary-type meshless method: the boundary point method based on BIE[J].Engineering Analysis with Boundary Elements,2007,31(9): 749-761.
    [29]马杭, 周鹃. 基于二次移动单元的边界点法解弹性力学问题[J]. 上海大学学报(自然科学版), 2009,15(6): 581-585. (MA Hang, ZHOU Juan. Boundary point method based on quadratic moving elements for elasticity[J].Journal of Shanghai University (Natural Science Edition), 2009,15(6): 581-585. (in Chinese))
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  8
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-11
  • 修回日期:  2024-07-02
  • 网络出版日期:  2025-04-02
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回