留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于裂尖塑性区矢径的结构断裂韧度预测方法

黄兴玲

黄兴玲. 基于裂尖塑性区矢径的结构断裂韧度预测方法[J]. 应用数学和力学, 2025, 46(8): 1073-1082. doi: 10.21656/1000-0887.450136
引用本文: 黄兴玲. 基于裂尖塑性区矢径的结构断裂韧度预测方法[J]. 应用数学和力学, 2025, 46(8): 1073-1082. doi: 10.21656/1000-0887.450136
HUANG Xingling. A Fracture Toughness Prediction Method for Structural Components Based on Crack Tip Plastic Zone Radius Vectors[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1073-1082. doi: 10.21656/1000-0887.450136
Citation: HUANG Xingling. A Fracture Toughness Prediction Method for Structural Components Based on Crack Tip Plastic Zone Radius Vectors[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1073-1082. doi: 10.21656/1000-0887.450136

基于裂尖塑性区矢径的结构断裂韧度预测方法

doi: 10.21656/1000-0887.450136
详细信息
    作者简介:

    黄兴玲(1980—),男,教授,博士(E-mail: xinglinghuang@yeah.net)

  • 中图分类号: O346.1

A Fracture Toughness Prediction Method for Structural Components Based on Crack Tip Plastic Zone Radius Vectors

  • 摘要: 由于约束效应,平面应变断裂韧性无法准确地表征工程结构的断裂韧度,二者之间的转换方法值得深入研究. 基于裂尖塑性区矢径,建立了材料断裂韧性的修正模型,从理论上将面内约束和面外约束的影响纳入到修正模型中,并提出了结构断裂韧度的预测方法. 利用该修正模型,对单边裂纹加筋板的断裂韧度和许用载荷进行了分析. 结果表明,面内约束和面外约束都对加筋板的断裂韧度、许用载荷有着重要影响;与平面应变断裂韧性和基于面内T应力的修正模型相比,基于塑性区矢径的修正模型更准确、更合理,并能综合地反映面内和面外的约束效应.
  • 图  1  基于塑性区矢径rp0的断裂韧度修正模型

    Figure  1.  The fracture toughness correction model based on plastic zone sizes rp0

    图  2  单边裂纹加筋板结构示意图

    Figure  2.  The configuration of a single edge-cracked stiffened plate

    图  3  碳钢34XH3MA在各种相对厚度(B/W)下的断裂韧性

    Figure  3.  Fracture toughnesses of carbon steel 34XH3MA under various relative thicknesses (B/W)

    图  4  修正的碳钢34XH3MA断裂韧性与试验数据对比

    Figure  4.  Comparisons of corrected fracture toughnesses and testing data on carbon steel 34XH3MA

    图  5  加筋板的裂尖应力场及塑性区特征

    Figure  5.  Characteristics of crack tip stress fields and plastic zones in the stiffened plate

    图  6  加筋板的断裂韧度和许用载荷

    Figure  6.  Fracture toughnesses and allowable loads in the stiffened plate

    表  1  碳钢34XH3MA断裂韧性的试验数据及相应的断裂参数[6-7]

    Table  1.   Measured fracture toughnesses and corresponding fracture parameters of carbon steel 34XH3MA[6-7]

    specimen W/mm B/W a/W Kmax/(MPa·m1/2) T11/MPa T33/MPa rp01/2/mm1/2 rp0/a
    SEN(B)-S-01 20 1.000 0.300 55.72 -31.70 -90.38 0.440 05 0.032
    SEN(B)-S-02 20 1.000 0.605 55.28 94.05 -21.21 0.417 42 0.014
    SEN(B)-S-03 20 1.000 0.620 59.42 105.90 -18.68 0.446 74 0.016
    SEN(B)-S-04 20 0.500 0.245 72.35 -73.61 -221.50 0.723 29 0.107
    SEN(B)-S-05 20 0.500 0.250 60.84 -58.97 -185.44 0.560 03 0.063
    SEN(B)-S-06 20 0.500 0.445 61.44 45.28 -155.45 0.559 19 0.035
    SEN(B)-S-07 20 0.500 0.445 69.70 51.40 -176.38 0.662 87 0.049
    SEN(B)-S-08 20 0.500 0.610 58.91 108.88 -116.87 0.517 36 0.022
    SEN(B)-S-09 20 0.500 0.615 61.25 115.75 -120.05 0.542 05 0.024
    C(T)-S-01 40 0.500 0.350 67.36 125.35 -123.23 0.612 02 0.027
    C(T)-S-02 40 0.500 0.350 70.17 130.67 -128.41 0.641 17 0.029
    C(T)-S-03 40 0.500 0.625 66.28 151.25 -93.81 0.591 30 0.014
    C(T)-S-04 40 0.500 0.645 72.13 163.25 -98.13 0.639 30 0.016
    C(T)-S-05 40 0.250 0.380 82.12 169.98 -248.60 0.977 62 0.063
    C(T)-S-06 40 0.250 0.425 83.55 187.50 -249.03 1.006 96 0.060
    C(T)-S-07 40 0.250 0.490 80.67 192.03 -236.13 0.941 30 0.045
    C(T)-S-08 40 0.250 0.475 82.00 194.25 -240.77 0.975 05 0.050
    下载: 导出CSV
  • [1] 刘葳, 蔡庆港, 金腾龙, 等. 极端循环载荷下加筋板失效机理与极限强度[J]. 哈尔滨工程大学学报, 2023, 44(8): 1275-1282.

    LIU Wei, CAI Qinggang, JIN Tenglong, et al. Failure mechanism and ultimate strength of stiffened plates under extreme cyclic load[J]. Journal of Harbin Engineering University, 2023, 44(8): 1275-1282. (in Chinese)
    [2] 刘宸宇, 骆烜赫, 刘康翔, 等. 基于平铺刚度法的弧形加筋板的轻量化设计[J]. 应用数学和力学, 2023, 44(8): 953-964. doi: 10.21656/1000-0887.430342

    LIU Chenyu, LUO Xuanhe, LIU Kangxiang, et al. Lightweight design of arc rib stiffened plates based on the smeared stiffener method[J]. Applied Mathematics and Mechanics, 2023, 44(8): 953-964. (in Chinese) doi: 10.21656/1000-0887.430342
    [3] HUANG X L, LIU Y H, HUANG X B, et al. Crack arrest behavior of central-cracked stiffened plates under uniform tensions[J]. International Journal of Mechanical Sciences, 2017, 133: 704-719. doi: 10.1016/j.ijmecsci.2017.09.040
    [4] 黄兴玲. 考虑约束效应的加筋板断裂行为研究[D]. 北京: 清华大学, 2019.

    HUANG Xingling. Research on fracture behavior of stiffened plates in consideration of constraint effects[D]. Beijing: Tsinghua University, 2019. (in Chinese)
    [5] HUANG Xingling. Combined effects of in-plane and out-of-plane constraints on fracture behaviors in central-cracked stiffened plates: a model based on plastic zone size[J]. Engineering Fracture Mechanics, 2021, 255: 107958. doi: 10.1016/j.engfracmech.2021.107958
    [6] HUANG Xingling, LIU Yinghua, HUANG Xiangbing. New constraint parameters based on crack tip plastic zone: theoretical derivations and effectiveness verification[J]. International Journal of Solids and Structures, 2020, 190: 129-147. doi: 10.1016/j.ijsolstr.2019.11.009
    [7] SHLYANNIKOV V N, BOYCHENKO N V, TUMANOV A V, et al. The elastic and plastic constraint parameters for three-dimensional problems[J]. Engineering Fracture Mechanics, 2014, 127: 83-96. doi: 10.1016/j.engfracmech.2014.05.015
    [8] MU M Y, WANG G Z, XUAN F Z, et al. Unified correlation of in-plane and out-of-plane constraints with cleavage fracture toughness[J]. Theoretical and Applied Fracture Mechanics, 2015, 80: 121-132. doi: 10.1016/j.tafmec.2015.10.005
    [9] LV J, YU L, DU W, et al. Theoretical approach of characterizing the crack-tip constraint effects associated with material's fracture toughness[J]. Archive of Applied Mechanics, 2018, 88(9): 1637-1656. doi: 10.1007/s00419-018-1392-8
    [10] 彭凡, 董世明. 一类非均布载荷下中心裂纹圆盘T应力分析[J]. 应用数学和力学, 2018, 39(7): 766-775. doi: 10.21656/1000-0887.380136

    PENG Fan, DONG Shiming. T-stress in a centrally cracked Brazilian disk under nonuniform pressure load[J]. Applied Mathematics and Mechanics, 2018, 39(7): 766-775. (in Chinese) doi: 10.21656/1000-0887.380136
    [11] SEAL C K, SHERRY A H. Predicting the effect of constraint on cleavage and ductile fracture toughness using area contour toughness scaling[J]. Engineering Fracture Mechanics, 2017, 186: 347-367. doi: 10.1016/j.engfracmech.2017.09.029
    [12] TONGE S M, SIMPSON C A, REINHARD C, et al. Unifying the effects of in and out-of-plane constraint on the fracture of ductile materials[J]. Journal of the Mechanics and Physics of Solids, 2020, 141: 103956. doi: 10.1016/j.jmps.2020.103956
    [13] ANDERSON T L. Fracture Mechanics: Fundamentals and Applications[M]. 3rd ed. New York: CRC Press, 2005: 25-101.
    [14] HUANG Xingling, LIU Yinghua, HUANG Xiangbing. Analytical characterizations of crack tip plastic zone size for central-cracked unstiffened and stiffened plates under biaxial loading[J]. Engineering Fracture Mechanics, 2019, 206: 1-20. doi: 10.1016/j.engfracmech.2018.11.047
    [15] HUANG Xingling, LIU Yinghua. Effects of T-stress on fracture behavior of central-cracked stiffened plate[J]. Key Engineering Materials, 2019, 795: 389-394. doi: 10.4028/www.scientific.net/KEM.795.389
    [16] 徐华, 曹政, 邹云鹏, 等. 裂纹面分布加载裂尖SIFs分析的广义参数Williams单元[J]. 应用数学和力学, 2022, 43(7): 752-760. doi: 10.21656/1000-0887.420317

    XU Hua, CAO Zheng, ZOU Yunpeng, et al. Williams elements with generalized degrees of freedom for crack tip SIFs analysis under crack surface distributed loading[J]. Applied Mathematics and Mechanics, 2022, 43(7): 752-760. (in Chinese) doi: 10.21656/1000-0887.420317
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  14
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-13
  • 修回日期:  2024-06-23
  • 刊出日期:  2025-08-01

目录

    /

    返回文章
    返回