留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

pH调节的纳米平行通道中Powell-Eyring流体的电渗流动

长龙 布仁满都拉 娜仁 孙艳军 菅永军

长龙, 布仁满都拉, 娜仁, 孙艳军, 菅永军. pH调节的纳米平行通道中Powell-Eyring流体的电渗流动[J]. 应用数学和力学, 2025, 46(1): 72-83. doi: 10.21656/1000-0887.450137
引用本文: 长龙, 布仁满都拉, 娜仁, 孙艳军, 菅永军. pH调节的纳米平行通道中Powell-Eyring流体的电渗流动[J]. 应用数学和力学, 2025, 46(1): 72-83. doi: 10.21656/1000-0887.450137
CHANG Long, BUREN Mandula, NA Ren, SUN Yanjun, JIAN Yongjun. Electroosmotic Flows of Powell-Eyring Fluids in pH-Regulated Parallel Plate Nanochannels[J]. Applied Mathematics and Mechanics, 2025, 46(1): 72-83. doi: 10.21656/1000-0887.450137
Citation: CHANG Long, BUREN Mandula, NA Ren, SUN Yanjun, JIAN Yongjun. Electroosmotic Flows of Powell-Eyring Fluids in pH-Regulated Parallel Plate Nanochannels[J]. Applied Mathematics and Mechanics, 2025, 46(1): 72-83. doi: 10.21656/1000-0887.450137

pH调节的纳米平行通道中Powell-Eyring流体的电渗流动

doi: 10.21656/1000-0887.450137
基金项目: 

国家自然科学基金 12162003

国家自然科学基金 11862018

国家自然科学基金 12262026

内蒙古自治区自然科学基金 2024LHMS01010

内蒙古自治区自然科学基金 2024LHMS01008

内蒙古自治区高等学校创新团队发展计划 NMGIRT2323

自治区直属高校基本科研业务费 NCYWT23035

详细信息
    作者简介:

    长龙(1979—),男,副教授,博士(E-mail: suolunga@163.com)

    通讯作者:

    菅永军(1974—),男,教授,博士, 博士生导师(通讯作者. E-mail: jianyj@dhu.edu.cn)

  • 中图分类号: O357.1

Electroosmotic Flows of Powell-Eyring Fluids in pH-Regulated Parallel Plate Nanochannels

  • 摘要: 在调节溶液pH值和盐浓度下, 利用同伦摄动法求解了纳米平行通道内Powell-Eyring流体的电渗流动(electroosmotic flow, EOF), 得到了近似解. 通过Chebyshev谱配置法验证了所得的近似解的准确性. 在此基础上, 研究了无量纲压力梯度G, 盐浓度MKCI和pH值, Powell-Eyring流体和Newton流体的黏度之比γ对速度剖面u和体积流率(平均速度)Q的影响. 结果表明, 同伦摄动法的收敛速度较快, 仅需展开到一阶解就与数值解完全吻合; 同时, MKCI, pH, γG对纳米通道中的电荷密度和Powell-Eyring流体电渗流速度具有显著影响.
  • 图  1  物理模型示意图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Schematic diagram of the physical model

    图  2  不同pH对应的EOF速度分布

    Figure  2.  EOF velocity distributions for different pH values

    图  3  纯EOF速度分布

    Figure  3.  Pure EOF velocity distributions

    图  4  不同pH和θ对应的纯EOF速度分布(γ=0.3)

    Figure  4.  Pure EOF velocity distributions for different pH and θ values (γ=0.3)

    图  5  壁面剪切应力随pH的分布

    Figure  5.  Distribution of wall shear stress with pH

    图  6  体积流率分布

    Figure  6.  Volume flow rate distribution

  • [1] STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics, 2004, 36 : 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
    [2] BAYRAKTAR T, PIDUGU S B. Characterization of liquid flows inmicrofluidic systems[J]. International Journal of Heat and Mass Transfer, 2006, 49 (5/6): 815-824. http://www.researchgate.net/profile/Srikanth_Pidugu/publication/222039140_Characterization_of_liquid_flow_in_microfluidic_systems/links/00b7d5256133690ff4000000.pdf
    [3] LEVINE S, MARRIOTT J R, NEALE G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials[J]. Journal of Colloid and Interface Science, 1975, 52 (1): 136-149. doi: 10.1016/0021-9797(75)90310-0
    [4] HSU J P, KAO C Y, TSENG S, et al. Electrokinetic flow through an elliptical microchannel: effects of aspect ratio and electrical boundary conditions[J]. Journal of Colloid and Interface Science, 2002, 248 (1): 176-184. doi: 10.1006/jcis.2001.8200
    [5] JIAN Y, YANG L, LIU Q. Time periodic electro-osmotic flow through amicroannulus[J]. Physics of Fluids, 2010, 22 (4): 042001. doi: 10.1063/1.3358473
    [6] LIN X H, ZHANG C B, GU J, et al. Poisson-Fokker-Planck model for biomolecules translocation through nanopore driven by electroosmotic flow[J]. Science China Physics, Mechanics & Astronomy, 2014, 57 (11): 2104-2113. http://www.onacademic.com/detail/journal_1000036502975210_5da5.html
    [7] 李子瑞. 离子浓差极化效应及其在微纳流控分子富集系统中的应用进展[J]. 中国科学: 技术科学, 2018, 48 (11): 1151-1166.

    LI Zirui. Ion concentration polarization and its application in molecular preconcentration in micro-nanofluidic systems[J]. Scientia Sinica: Technologica, 2018, 48 (11): 1151-1166. (in Chinese)
    [8] 邢靖楠, 菅永军. 矩形纳米管道中的电动能量转换效率[J]. 应用数学和力学, 2016, 37 (4): 363-372. doi: 10.3879/j.issn.1000-0887.2016.04.004

    XING Jingnan, JIAN Yongjun. Electrokinetic energy conversion efficiency in rectangular nanochannels[J]. Applied Mathematics and Mechanics, 2016, 37 (4): 363-372. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.04.004
    [9] 许丽娜, 菅永军. 柔性圆柱形微管道内的电动流动及传热研究[J]. 应用数学和力学, 2019, 40 (4): 408-418. doi: 10.21656/1000-0887.390155

    XU Lina, JIAN Yongjun. Electrokinetic flow and heat transfer in soft microtubes[J]. Applied Mathematics and Mechanics, 2019, 40 (4): 408-418. (in Chinese) doi: 10.21656/1000-0887.390155
    [10] 王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020, 41 (4): 396-405. doi: 10.21656/1000-0887.400151

    WANG Shuang, JIAN Yongjun. Magnetohydrodynamic electroosmotic flow in zeta potential patterned micro-parallel channels[J]. Applied Mathematics and Mechanics, 2020, 41 (4): 396-405. (in Chinese) doi: 10.21656/1000-0887.400151
    [11] TANG G H, LI X F, HE Y L, et al. Electroosmotic flow of non-Newtonian fluid in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 157 (1/2): 133-137. http://zhaojihong.gr.xjtu.edu.cn/c/document_library/get_file?folderId=1766831&name=DLFE-22707.pdf
    [12] LIU Q, JIAN Y, YANG L. Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel[J]. Physics of Fluids, 2011, 23 (10): 102001. doi: 10.1063/1.3640082
    [13] TANG L, HAO Y, PENG L, et al. Ion current rectification properties of non-Newtonian fluids in conicalnanochannels[J]. Physical Chemistry Chemical Physics, 2024, 26 (4): 2895-2906. doi: 10.1039/D3CP05184F
    [14] 姜玉婷, 齐海涛. 微平行管道内Eyring流体的电渗滑移流动[J]. 物理学报, 2015, 64 (17): 222-227.

    JIANG Yuting, QI Haitao. Electro-osmotic slip flow of Eyring fluid in a slit microchannel[J]. Acta Physica Sinica, 2015, 64 (17): 222-227. (in Chinese)
    [15] 郑佳璇, 梁韵笛, 菅永军. 高zeta势下Phan-Thien-Tanner(PTT)流体的电渗微推进器[J]. 应用数学和力学, 2023, 44 (10): 1213-1225.

    ZHENG Jiaxuan, LIANG Yundi, JIAN Yongjun. Electroosmotic micro thrusters of Phan-Thien-Tanner (PTT) fluid at high zeta potential[J]. Applied Mathematics and Mechanics, 2023, 44 (10): 1213-1225. (in Chinese)
    [16] 长龙, 布仁满都拉, 孙艳军, 等. 具有正弦波纹的平行板微通道中Jeffrey流体周期电渗流动[J]. 应用数学和力学, 2024, 45 (5): 622-636.

    CHANG Long, BUREN Mandula, SUN Yanjun, et al. Periodic electroosmotic flow of the Jeffrey fluid in microchannel between two sinusoidally wavy walls[J]. Applied Mathematics and Mechanics, 2024, 45 (5): 622-636. (in Chinese)
    [17] YANG J, CHEN Y, DU C, et al. Numerical simulation of electroosmotic mixing of non-Newtonian fluids in a micromixer with zeta potential heterogeneity[J]. Chemical Engineering and Processing: Process Intensification, 2023, 186 : 109339. doi: 10.1016/j.cep.2023.109339
    [18] YADAV P K, ROSHAN M. Mathematical modeling of blood flow in an annulus porous region between two coaxial deformable tubes: an advancement to peristaltic endoscope[J]. Chinese Journal of Physics, 2024, 88 : 89-109. doi: 10.1016/j.cjph.2024.01.017
    [19] POWELL R E, EYRING H. Mechanisms for the relaxation theory of viscosity[J]. Nature, 1944, 154 (3909): 427-428. doi: 10.1038/154427a0
    [20] ISLAM S, SHAH A, ZHOU C Y, et al. Homotopy perturbation analysis of slider bearing with Powell-Eyring fluid[J]. Zeitschrift Für Angewandte Mathematik und Physik, 2009, 60 (6): 1178-1193. doi: 10.1007/s00033-009-7034-9
    [21] HAYAT T, IQBAL Z, QASIM M, et al. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions[J]. International Journal of Heat and Mass Transfer, 2012, 55 (7/8): 1817-1822. http://www.xueshufan.com/publication/2078161903
    [22] PATIL P M, GOUDAR B. Impact of impulsive motion on the Eyring-Powell nanofluid flow across a rotating sphere in MHD convective regime: entropy analysis[J]. Journal of Magnetism and Magnetic Materials, 2023, 571 : 170590. doi: 10.1016/j.jmmm.2023.170590
    [23] AKBAR Y, HUANG S, ASHRAF M U, et al. Electrothermal analysis for reactive Powell Eyring nanofluid flow regulated by peristaltic pumping with mass transfer[J]. Case Studies in Thermal Engineering, 2023, 44 : 102828. doi: 10.1016/j.csite.2023.102828
    [24] GOSWAMI P, MONDAL P K, DUTTA S, et al. Electroosmosis of Powell-Eyring fluids under interfacial slip[J]. Electrophoresis, 2015, 36 (5): 703-711. doi: 10.1002/elps.201400473
    [25] LI F Q, JIAN Y J, XIE Z Y, et al. Electromagnetohydrodynamic flow of Powell-Eyring fluids in a narrow confinement[J]. Journal of Mechanics, 2017, 33 (2): 225-233. doi: 10.1017/jmech.2016.75
    [26] YEH L H, XUE S, JOO S W, et al. Field effect control of surface charge property and electroosmotic flow in nanofluidics[J]. The Journal of Physical Chemistry C, 2012, 116 (6): 4209-4216. doi: 10.1021/jp211496b
    [27] TSENG S, TAI Y H, HSU J P. Ionic current in a pH-regulated nanochannel filled with multiple ionic species[J]. Microfluidics and Nanofluidics, 2014, 17 (5): 933-941. doi: 10.1007/s10404-014-1384-0
    [28] MEI L, YEH L H, QIAN S. Buffer effect on the ionic conductance in a pH-regulated nanochannel[J]. Electrochemistry Communications, 2015, 51 : 129-132. doi: 10.1016/j.elecom.2014.12.020
    [29] SADEGHI M, SAIDI M H, SADEGHI A. Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel[J]. Physics of Fluids, 2017, 29 (6): 062002. doi: 10.1063/1.4986075
    [30] HSU J P, CHU Y Y, LIN C Y, et al. Ion transport in a pH-regulated conical nanopore filled with a power-law fluid[J]. Journal of Colloid and Interface Science, 2019, 537 : 358-365. doi: 10.1016/j.jcis.2018.11.020
    [31] BARMAN B, KUMAR D, GOPMANDAL P P, et al. Electrokinetic ion transport and fluid flow in a pH-regulated polymer-grafted nanochannel filled with power-law fluid[J]. Soft Matter, 2020, 16 (29): 6862-6874. doi: 10.1039/D0SM00709A
    [32] YANG M, BUREN M, CHANG L, et al. Time periodic electroosmotic flow in a pH-regulated parallel-plate nano- channel[J]. Physica Scripta, 2022, 97 (3): 030003. doi: 10.1088/1402-4896/ac52f9
    [33] BAG N. Impact of pH-regulated wall charge on the modulation of electroosmotic flow and transport of ionic species through slit nanochannels[J]. Colloid Journal, 2023, 85 (3): 315-325. doi: 10.1134/S1061933X23600033
    [34] CHUANG P Y, HSU J P. Electroosmotic flow, ionic current rectification, and selectivity of a conical nanopore modified with a pH-regulated polyelectrolyte layer: influence of functional groups profile[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676 : 132240. doi: 10.1016/j.colsurfa.2023.132240
    [35] PENG L, ZHANG Z, TANG L, et al. Electrokinetic ion transport of viscoelastic fluids in a pH-regulated nanochannel[J]. Surfaces and Interfaces, 2024, 46 : 103957. doi: 10.1016/j.surfin.2024.103957
    [36] MEHTA S K, GHOSH A, MONDAL P K, et al. Electroosmosis of viscoelastic fluids in pH-sensitive hydrophobic microchannels: effect of surface charge-dependent slip length[J]. Physics of Fluids, 2024, 36 (2): 023101. doi: 10.1063/5.0181156
    [37] HE J H. Homotopy perturbation method: a new nonlinear analytical technique[J]. Applied Mathematics and Computation, 2003, 135 (1): 73-79. doi: 10.1016/S0096-3003(01)00312-5
  • 加载中
图(6)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-12
  • 修回日期:  2024-06-07
  • 刊出日期:  2025-01-01

目录

    /

    返回文章
    返回