[1] |
STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics, 2004, 36 : 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
|
[2] |
BAYRAKTAR T, PIDUGU S B. Characterization of liquid flows inmicrofluidic systems[J]. International Journal of Heat and Mass Transfer, 2006, 49 (5/6): 815-824. http://www.researchgate.net/profile/Srikanth_Pidugu/publication/222039140_Characterization_of_liquid_flow_in_microfluidic_systems/links/00b7d5256133690ff4000000.pdf
|
[3] |
LEVINE S, MARRIOTT J R, NEALE G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials[J]. Journal of Colloid and Interface Science, 1975, 52 (1): 136-149. doi: 10.1016/0021-9797(75)90310-0
|
[4] |
HSU J P, KAO C Y, TSENG S, et al. Electrokinetic flow through an elliptical microchannel: effects of aspect ratio and electrical boundary conditions[J]. Journal of Colloid and Interface Science, 2002, 248 (1): 176-184. doi: 10.1006/jcis.2001.8200
|
[5] |
JIAN Y, YANG L, LIU Q. Time periodic electro-osmotic flow through amicroannulus[J]. Physics of Fluids, 2010, 22 (4): 042001. doi: 10.1063/1.3358473
|
[6] |
LIN X H, ZHANG C B, GU J, et al. Poisson-Fokker-Planck model for biomolecules translocation through nanopore driven by electroosmotic flow[J]. Science China Physics, Mechanics & Astronomy, 2014, 57 (11): 2104-2113. http://www.onacademic.com/detail/journal_1000036502975210_5da5.html
|
[7] |
李子瑞. 离子浓差极化效应及其在微纳流控分子富集系统中的应用进展[J]. 中国科学: 技术科学, 2018, 48 (11): 1151-1166.LI Zirui. Ion concentration polarization and its application in molecular preconcentration in micro-nanofluidic systems[J]. Scientia Sinica: Technologica, 2018, 48 (11): 1151-1166. (in Chinese)
|
[8] |
邢靖楠, 菅永军. 矩形纳米管道中的电动能量转换效率[J]. 应用数学和力学, 2016, 37 (4): 363-372. doi: 10.3879/j.issn.1000-0887.2016.04.004XING Jingnan, JIAN Yongjun. Electrokinetic energy conversion efficiency in rectangular nanochannels[J]. Applied Mathematics and Mechanics, 2016, 37 (4): 363-372. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.04.004
|
[9] |
许丽娜, 菅永军. 柔性圆柱形微管道内的电动流动及传热研究[J]. 应用数学和力学, 2019, 40 (4): 408-418. doi: 10.21656/1000-0887.390155XU Lina, JIAN Yongjun. Electrokinetic flow and heat transfer in soft microtubes[J]. Applied Mathematics and Mechanics, 2019, 40 (4): 408-418. (in Chinese) doi: 10.21656/1000-0887.390155
|
[10] |
王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020, 41 (4): 396-405. doi: 10.21656/1000-0887.400151 WANG Shuang, JIAN Yongjun. Magnetohydrodynamic electroosmotic flow in zeta potential patterned micro-parallel channels[J]. Applied Mathematics and Mechanics, 2020, 41 (4): 396-405. (in Chinese) doi: 10.21656/1000-0887.400151
|
[11] |
TANG G H, LI X F, HE Y L, et al. Electroosmotic flow of non-Newtonian fluid in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 157 (1/2): 133-137. http://zhaojihong.gr.xjtu.edu.cn/c/document_library/get_file?folderId=1766831&name=DLFE-22707.pdf
|
[12] |
LIU Q, JIAN Y, YANG L. Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel[J]. Physics of Fluids, 2011, 23 (10): 102001. doi: 10.1063/1.3640082
|
[13] |
TANG L, HAO Y, PENG L, et al. Ion current rectification properties of non-Newtonian fluids in conicalnanochannels[J]. Physical Chemistry Chemical Physics, 2024, 26 (4): 2895-2906. doi: 10.1039/D3CP05184F
|
[14] |
姜玉婷, 齐海涛. 微平行管道内Eyring流体的电渗滑移流动[J]. 物理学报, 2015, 64 (17): 222-227.JIANG Yuting, QI Haitao. Electro-osmotic slip flow of Eyring fluid in a slit microchannel[J]. Acta Physica Sinica, 2015, 64 (17): 222-227. (in Chinese)
|
[15] |
郑佳璇, 梁韵笛, 菅永军. 高zeta势下Phan-Thien-Tanner(PTT)流体的电渗微推进器[J]. 应用数学和力学, 2023, 44 (10): 1213-1225.ZHENG Jiaxuan, LIANG Yundi, JIAN Yongjun. Electroosmotic micro thrusters of Phan-Thien-Tanner (PTT) fluid at high zeta potential[J]. Applied Mathematics and Mechanics, 2023, 44 (10): 1213-1225. (in Chinese)
|
[16] |
长龙, 布仁满都拉, 孙艳军, 等. 具有正弦波纹的平行板微通道中Jeffrey流体周期电渗流动[J]. 应用数学和力学, 2024, 45 (5): 622-636.CHANG Long, BUREN Mandula, SUN Yanjun, et al. Periodic electroosmotic flow of the Jeffrey fluid in microchannel between two sinusoidally wavy walls[J]. Applied Mathematics and Mechanics, 2024, 45 (5): 622-636. (in Chinese)
|
[17] |
YANG J, CHEN Y, DU C, et al. Numerical simulation of electroosmotic mixing of non-Newtonian fluids in a micromixer with zeta potential heterogeneity[J]. Chemical Engineering and Processing: Process Intensification, 2023, 186 : 109339. doi: 10.1016/j.cep.2023.109339
|
[18] |
YADAV P K, ROSHAN M. Mathematical modeling of blood flow in an annulus porous region between two coaxial deformable tubes: an advancement to peristaltic endoscope[J]. Chinese Journal of Physics, 2024, 88 : 89-109. doi: 10.1016/j.cjph.2024.01.017
|
[19] |
POWELL R E, EYRING H. Mechanisms for the relaxation theory of viscosity[J]. Nature, 1944, 154 (3909): 427-428. doi: 10.1038/154427a0
|
[20] |
ISLAM S, SHAH A, ZHOU C Y, et al. Homotopy perturbation analysis of slider bearing with Powell-Eyring fluid[J]. Zeitschrift Für Angewandte Mathematik und Physik, 2009, 60 (6): 1178-1193. doi: 10.1007/s00033-009-7034-9
|
[21] |
HAYAT T, IQBAL Z, QASIM M, et al. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions[J]. International Journal of Heat and Mass Transfer, 2012, 55 (7/8): 1817-1822. http://www.xueshufan.com/publication/2078161903
|
[22] |
PATIL P M, GOUDAR B. Impact of impulsive motion on the Eyring-Powell nanofluid flow across a rotating sphere in MHD convective regime: entropy analysis[J]. Journal of Magnetism and Magnetic Materials, 2023, 571 : 170590. doi: 10.1016/j.jmmm.2023.170590
|
[23] |
AKBAR Y, HUANG S, ASHRAF M U, et al. Electrothermal analysis for reactive Powell Eyring nanofluid flow regulated by peristaltic pumping with mass transfer[J]. Case Studies in Thermal Engineering, 2023, 44 : 102828. doi: 10.1016/j.csite.2023.102828
|
[24] |
GOSWAMI P, MONDAL P K, DUTTA S, et al. Electroosmosis of Powell-Eyring fluids under interfacial slip[J]. Electrophoresis, 2015, 36 (5): 703-711. doi: 10.1002/elps.201400473
|
[25] |
LI F Q, JIAN Y J, XIE Z Y, et al. Electromagnetohydrodynamic flow of Powell-Eyring fluids in a narrow confinement[J]. Journal of Mechanics, 2017, 33 (2): 225-233. doi: 10.1017/jmech.2016.75
|
[26] |
YEH L H, XUE S, JOO S W, et al. Field effect control of surface charge property and electroosmotic flow in nanofluidics[J]. The Journal of Physical Chemistry C, 2012, 116 (6): 4209-4216. doi: 10.1021/jp211496b
|
[27] |
TSENG S, TAI Y H, HSU J P. Ionic current in a pH-regulated nanochannel filled with multiple ionic species[J]. Microfluidics and Nanofluidics, 2014, 17 (5): 933-941. doi: 10.1007/s10404-014-1384-0
|
[28] |
MEI L, YEH L H, QIAN S. Buffer effect on the ionic conductance in a pH-regulated nanochannel[J]. Electrochemistry Communications, 2015, 51 : 129-132. doi: 10.1016/j.elecom.2014.12.020
|
[29] |
SADEGHI M, SAIDI M H, SADEGHI A. Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel[J]. Physics of Fluids, 2017, 29 (6): 062002. doi: 10.1063/1.4986075
|
[30] |
HSU J P, CHU Y Y, LIN C Y, et al. Ion transport in a pH-regulated conical nanopore filled with a power-law fluid[J]. Journal of Colloid and Interface Science, 2019, 537 : 358-365. doi: 10.1016/j.jcis.2018.11.020
|
[31] |
BARMAN B, KUMAR D, GOPMANDAL P P, et al. Electrokinetic ion transport and fluid flow in a pH-regulated polymer-grafted nanochannel filled with power-law fluid[J]. Soft Matter, 2020, 16 (29): 6862-6874. doi: 10.1039/D0SM00709A
|
[32] |
YANG M, BUREN M, CHANG L, et al. Time periodic electroosmotic flow in a pH-regulated parallel-plate nano- channel[J]. Physica Scripta, 2022, 97 (3): 030003. doi: 10.1088/1402-4896/ac52f9
|
[33] |
BAG N. Impact of pH-regulated wall charge on the modulation of electroosmotic flow and transport of ionic species through slit nanochannels[J]. Colloid Journal, 2023, 85 (3): 315-325. doi: 10.1134/S1061933X23600033
|
[34] |
CHUANG P Y, HSU J P. Electroosmotic flow, ionic current rectification, and selectivity of a conical nanopore modified with a pH-regulated polyelectrolyte layer: influence of functional groups profile[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676 : 132240. doi: 10.1016/j.colsurfa.2023.132240
|
[35] |
PENG L, ZHANG Z, TANG L, et al. Electrokinetic ion transport of viscoelastic fluids in a pH-regulated nanochannel[J]. Surfaces and Interfaces, 2024, 46 : 103957. doi: 10.1016/j.surfin.2024.103957
|
[36] |
MEHTA S K, GHOSH A, MONDAL P K, et al. Electroosmosis of viscoelastic fluids in pH-sensitive hydrophobic microchannels: effect of surface charge-dependent slip length[J]. Physics of Fluids, 2024, 36 (2): 023101. doi: 10.1063/5.0181156
|
[37] |
HE J H. Homotopy perturbation method: a new nonlinear analytical technique[J]. Applied Mathematics and Computation, 2003, 135 (1): 73-79. doi: 10.1016/S0096-3003(01)00312-5
|