留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地震激励下等横截面无限水库频域和时域响应的FEM-SBFEM计算方法

李上明 肖世富

李上明, 肖世富. 地震激励下等横截面无限水库频域和时域响应的FEM-SBFEM计算方法[J]. 应用数学和力学, 2025, 46(4): 425-437. doi: 10.21656/1000-0887.450138
引用本文: 李上明, 肖世富. 地震激励下等横截面无限水库频域和时域响应的FEM-SBFEM计算方法[J]. 应用数学和力学, 2025, 46(4): 425-437. doi: 10.21656/1000-0887.450138
LI Shangming, XIAO Shifu. An FEM-SBFEM Coupled Method for Infinite Reservoir Responses With Uniform Cross Sections Under Seismic Excitations in Frequency and Time Domains[J]. Applied Mathematics and Mechanics, 2025, 46(4): 425-437. doi: 10.21656/1000-0887.450138
Citation: LI Shangming, XIAO Shifu. An FEM-SBFEM Coupled Method for Infinite Reservoir Responses With Uniform Cross Sections Under Seismic Excitations in Frequency and Time Domains[J]. Applied Mathematics and Mechanics, 2025, 46(4): 425-437. doi: 10.21656/1000-0887.450138

地震激励下等横截面无限水库频域和时域响应的FEM-SBFEM计算方法

doi: 10.21656/1000-0887.450138
我刊编委肖世富来稿
基金项目: 

国家自然科学基金 12472171

国家自然科学基金 U2430201

详细信息
    通讯作者:

    李上明(1978—),男,研究员,博士,博士生导师(通讯作者. E-mail: hustmingsl@126.com)

  • 中图分类号: O39

An FEM-SBFEM Coupled Method for Infinite Reservoir Responses With Uniform Cross Sections Under Seismic Excitations in Frequency and Time Domains

Contributed by XIAO Shifu, M.AMM Editorial Board
  • 摘要: 坝体抗震设计和评估需要准确计算无限水库动力响应. 基于比例边界有限元法(scaled boundary finite element method,SBFEM)力学推导技术,推导了顺河向地震激励下等横截面无限水域频域响应计算公式,利用Fourier逆变换建立了时域响应控制方程,通过线性叠加推导了顺河、横河、竖直三向组合地震激励下的无限水域频域和时域响应的SBFEM计算公式. 结合有限元法,建立了无限水库频域和时域响应的FEM-SBFEM耦合方程. 分析了地震激励下的二维、三维等横截面无限水库频域、时域响应,数值验证了所建立计算公式的正确性. 所发展的FEM-SBFEM公式体系可推广应用于库底库岸具有吸收性的、横截面有任意几何形状的无限水库谐响应及瞬态响应分析.
    1)  我刊编委肖世富来稿
  • 图  1  坝库系统

    Figure  1.  The dam-reservoir system

    图  2  具有等横截面的远场

    Figure  2.  The far field with a uniform cross section

    图  3  远场SBFEM网格即近远场耦合面网格

    Figure  3.  The SBFEM discretization of the far field

    图  4  三维矩形截面坝库系统

    Figure  4.  The 3D dam-reservoir system with a rectangular channel

    图  5  顺河和竖直向激励下坝体z=0.6H处水动压力

    Figure  5.  Dam's pressures at z=0.6H induced by upstream and vertical excitations

    图  6  半圆形等横截面无限水库

    Figure  6.  The semi-circular infinite reservoir with a uniform cross section

    图  7  半圆形横截面离散网格

    Figure  7.  The semi-circular infinite reservoir cross section mesh

    图  8  顺河向激励$a_{x} \mathrm{e}^{\mathrm{i} \omega t}$ 下$r=0.6 H, \theta=0$ 的压力

    Figure  8.  Pressures of point $r=0.6 H, \theta=0$ under upstream excitations $a_{x} \mathrm{e}^{\mathrm{i} \omega t}$

    图  9  坚直向激励$a_{y} \mathrm{e}^{\mathrm{i} \omega t}$ 下$r=0.6 H, \theta=0$ 的压力

    Figure  9.  Pressures of point $r=0.6 H, \theta=0$ under vertical excitations $a_{y} \mathrm{e}^{\mathrm{i} \omega t}$

    图  10  横河向激励$a_{z} \mathrm{e}^{\mathrm{i} \omega t}$ 下$r=0.6 H, \theta=45^{\circ}$ 的压力

    Figure  10.  Pressures of point $r=0.6 H, \theta=45^{\circ}$ under cross-stream excitations $a_{z} \mathrm{e}^{\mathrm{i} \omega t}$

    图  11  二维重力坝及其网格

    Figure  11.  The 2D gravity dam and its mesh

    图  12  顺河向激励$a_{x} \mathrm{e}^{\mathrm{i} \omega t}$ 下重力坝坝面压力分布

    Figure  12.  Pressure distributions along the gravity dam surface under upstream exciations $a_{x} \mathrm{e}^{\mathrm{i} \omega t}$

    图  13  重力坝库系统及其网格

    Figure  13.  The gravity dam-reservoir system and its mesh

    图  14  顺河向斜面加速度

    Figure  14.  The upsteam ramp acceleration

    图  15  α=1.0,0.8重力坝坝角压力

    Figure  15.  Dam heel's pressures of the gravity dam for α=1.0, 0.8

  • [1] BEHROOZI A M, VAGHEFI M. Application of coupled RBFDQ-FEM as a meshless method for time-domain analysis of dam-reservoir systems subjected to earthquake excitation[J]. Engineering Analysis With Boundary Elements, 2023, 153 : 160-171. doi: 10.1016/j.enganabound.2023.05.017
    [2] YE J, ZHOU H, ZHOU X. Hydrodynamic pressure on lateral side of dam excited by harmonic seismic vibration: a novel formulation[J]. Soil Dynamics and Earthquake Engineering, 2023, 164 : 107626. doi: 10.1016/j.soildyn.2022.107626
    [3] KHIAVI M P, FERDOUSI A, KHIAVI A M. A probabilistic model for evaluation of the dynamic behavior of a concrete gravity dam considering the fluid-structure interaction[J]. Advances in Civil Engineering, 2023, 2023 : 9927608.
    [4] YA S, EISENTRÄGER S, QU Y L, et al. Seismic analysis of post-tensioned concrete gravity dams using scaled boundary finite elements implemented as ABAQUS UEL[J]. Soil Dynamics and Earthquake Engineering, 2023, 164 : 107620. doi: 10.1016/j.soildyn.2022.107620
    [5] 李艳朋, 林皋, 胡志强, 等. 基于声固耦合法的拱坝-库水-地基相互作用分析[J]. 哈尔滨工程大学学报, 2022, 43 (4): 451-457.

    LI Yanpeng, LIN Gao, HU Zhiqiang, et al. Arch dam-reservoir-foundation interaction analysis based on the acoustic-structure coupling method[J]. Journal of Harbin Engineering University, 2022, 43 (4): 451-457. (in Chinese)
    [6] WOLF J P, SONG C. Finite-Element Modeling of Unbounded Media[M]. New York, USA: Wiley, 1996.
    [7] LIN G, WANG Y, HU Z Q. An efficient approach for frequency-domain and time-domain hydrodynamic analysis of dam-reservoir systems[J]. Earthquake Engineering & Structural Dynamics, 2012, 41 (13): 1725-1749.
    [8] LI S M, LIANG H, LI A M. A semi-analytical solution for characteristics of a dam-reservoir system with absorptive reservoir bottom[J]. Journal of Hydrodynamics, 2008, 20 (6): 727-734. doi: 10.1016/S1001-6058(09)60008-1
    [9] LI S M. Scaled boundary finite element method for semi-infinite reservoir with uniform cross section[J]. International Journal of Computational Methods, 2012, 9 (1): 1240006. doi: 10.1142/S0219876212400063
    [10] 王毅, 胡志强, 郭维东. 考虑坝体柔性的重力坝坝面地震动水压力计算[J]. 水利水电科技进展, 2019, 39 (3): 38-43.

    WANG Yi, HU Zhiqiang, GUO Weidong. Calculation of earthquake-induced hydrodynamic pressure considering gravity dam flexibility[J]. Advances in Science and Technology of Water Resources, 2019, 39 (3): 38-43. (in Chinese)
    [11] 李上明. 基于比例边界有限元法的坝库瞬态耦合分析[J]. 华中科技大学学报(自然科学版), 2011, 39 (9): 108-111.

    LI Shangming. Dam-reservoir transient coupling analysis based on SBFEM[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39 (9): 108-111. (in Chinese)
    [12] 李上明. 基于比例边界有限元法动态刚度矩阵的坝库耦合分析方法[J]. 工程力学, 2013, 30 (2): 313-317.

    LI Shangming. Transient analysis method for dam-reservoir interaction based on dynamic stiffness of sbfem[J]. Engineering Mechanics, 2013, 30 (2): 313-317. (in Chinese)
    [13] 李上明, 吴连军. 基于连分式与有限元法的坝库耦合瞬态分析方法[J]. 工程力学, 2016, 33 (4): 9-16.

    LI Shangming, WU Lianjun. Dam-reservoir interaction transient-method based on continued fraction formulation and fem[J]. Engineering Mechanics, 2016, 33 (4): 9-16. (in Chinese)
    [14] WANG X, JIN F, PREMPRAMOTE S, et al. Time-domain analysis of gravity dam-reservoir interaction using high-order doubly asymptotic open boundary[J]. Computers & Structures, 2011, 89 (7/8): 668-680.
    [15] QU Y L, CHEN D H, LIU L, et al. A direct time-domain procedure for the seismic analysis of dam-foundation-reservoir systems using the scaled boundary finite element method[J]. Computers and Geotechnics, 2021, 138 : 104364. doi: 10.1016/j.compgeo.2021.104364
    [16] 许贺, 邹德高, 孔宪京. 基于FEM-SBFEM的坝-库水动力耦合简化分析方法[J]. 工程力学, 2019, 36 (12): 37-43.

    XU He, ZOU Degao, KONG Xianjing. A simplified dam-reservoir dynamic coupling analysis method based on fem-sbfem[J]. Engineering Mechanics, 2019, 36 (12): 37-43. (in Chinese)
    [17] LI S M. Diagonalization procedure for scaled boundary finite element method in modeling semi-infinite reservoir with uniform cross-section[J]. International Journal for Numerical Methods in Engineering, 2009, 80 (5): 596-608. doi: 10.1002/nme.2647
    [18] WEBER B. Rational Transmitting Boundaries for Time-Domain Analysis of Dam-Reservoir Interaction[M]. New York: Springer-Verlag, 1994.
    [19] TSAI C S. Semi-analytical solution for hydrodynamic pressures on dams with arbitrary upstream face considering water compressibility[J]. Computers & Structures, 1992, 42 (4): 497-502.
  • 加载中
图(15)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  16
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-13
  • 修回日期:  2025-02-24
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回