Exact Solutions for Axisymmetric Bending of Laminated Cylindrical Shells With General Boundary Conditions
-
摘要: 复合材料层合圆柱壳因其材料与结构的优异特性,在化工、海洋和航空航天工程等领域中得到了广泛使用,该结构承载时在层间和边界附近的局部力学响应较为复杂,并会影响整体结构的工作性能. 状态空间法是求解层合结构精确解的一种有效方法,在处理非简支边界条件时通常需要借助数值方法. 该文基于层合圆柱壳的状态空间框架,将非简支端的边界位移函数也作为状态变量引入状态方程,建立了严格满足边界条件的齐次状态方程;然后,利用层合渐近技术将状态矩阵的系数常数化,得到了任意子层的状态传递关系,结合层间的连续性条件推出了层合圆柱壳的状态传递关系;最后,通过Fourier级数引入内外表面的载荷条件,得到了结构轴对称弯曲问题的精确解. 算例表明,所得解与有限元解吻合得很好,能够给出层合圆柱壳应力和位移沿轴向和径向的精确分布规律. 然后,分析了不同边界条件和铺层形式对静力响应的影响. 另外,通过固支端与自由端及其附近的位移与应力分布规律说明了两种约束产生的端部效应.Abstract: Due to the excellent properties of materials and structures, composite laminated cylindrical shells are widely used in such key fields as chemical, marine and aerospace engineering. However, the local mechanical responses near the interfaces and boundaries are complex and affect the performances of the structures. As an effective method to obtain the exact solutions of the laminated structures, the state space method needs the numerical simulation to deal with the non-simply supported boundaries. Based on the state space framework for laminated cylindrical shells, the boundary displacement functions at the non-simply supported ends were introduced into the state equations as state variables, and homogeneous state equations were established to strictly satisfy the boundary conditions. Then, the variable coefficients in the state equations were converted to constants with the lamination approximate method, and the transfer relations of the mechanical quantities along the thickness of the laminated cylindrical shell were established. Finally, the loading conditions on the surfaces of the cylindrical shells were introduced with the Fourier series, and the exact solutions to the axisymmetric bending problems were obtained. The examples show that, the present solutions are consistent with the finite element ones, and give the exact distributions of the stresses and displacements along the axial and radial directions of the laminated cylindrical shells. In addition, the displacement and stress distributions near the clamped and free ends help illustrate the end effects of the two constraints.
-
表 1 层合圆柱壳特定点的位移和应力
Table 1. Displacements and stresses of laminated cylindrical shells
$\frac{r-r_{\mathrm{a}}}{h}$ CC CS CF FEM present FEM present FEM present u
CC: x=l/4
CS/CF: x=l0 0.349 7 0.339 2 -11.156 6 -11.047 4 0.647 9 0.573 2 1/3 0.258 9 0.258 2 6.081 5 5.996 0 0.470 7 0.473 6 0.5 0.071 8 0.071 4 0.672 5 0.670 5 0.038 5 -0.113 1 2/3 -0.108 8 -0.109 1 0.200 3 0.199 7 -0.195 8 -0.268 8 1 -0.183 1 -0.183 4 8.762 5 8.759 5 -0.297 6 -0.301 5 w
x=l/20 1.209 4 1.209 2 1.210 1 1.209 8 1.209 0 1.208 5 1/3 1.070 3 1.070 4 1.071 0 1.071 0 1.069 9 1.069 8 0.5 1.017 7 1.017 7 1.018 4 1.018 4 1.017 2 1.017 3 2/3 0.993 0 0.993 0 0.993 7 0.993 7 0.992 5 0.992 4 1 0.975 7 0.975 7 0.976 24 0.976 3 0.975 2 0.975 4 10σr
x=l/20.1 -9.694 9 -9.765 5 -9.695 0 -9.760 4 -9.694 8 -9.748 8 1/3 -9.048 7 -9.056 8 -9.050 2 -9.056 7 -9.054 5 -9.027 7 0.5 -4.389 3 -4.399 3 -4.389 4 -4.399 5 -4.388 3 -4.385 4 2/3 -0.289 8 -0.290 2 -0.288 6 -0.290 8 -0.286 4 -0.291 2 0.9 -0.082 9 -0.077 9 -0.082 9 -0.080 3 -0.082 9 -0.051 8 τrx
x=00.1 3.028 4 2.942 8 3.028 8 3.065 0 3.028 6 3.062 3 1/3 1.546 4 1.039 2 1.546 4 1.039 3 1.546 4 1.039 5 0.5 0.831 7 0.839 9 0.831 7 0.840 0 0.831 7 0.839 6 2/3 1.221 3 0.872 2 1.221 3 0.872 3 1.221 2 0.873 1 0.9 1.475 3 1.547 7 1.475 4 1.496 1 1.475 0 1.496 1 100σx
x=l/20 -7.383 2 -7.834 1 -7.958 8 -8.180 8 -5.213 2 -6.430 8 1/3- -7.417 2 -8.012 8 -7.417 2 -7.894 3 -6.105 6 -6.780 0 1/3+ -3.671 0 -3.713 2 -3.367 1 -3.704 9 -3.622 1 -3.655 3 0.5 0.632 6 0.619 5 0.654 6 0.641 2 0.543 9 0.639 6 2/3- 4.533 6 4.555 2 4.586 4 4.592 4 4.534 4 4.528 6 2/3+ 4.668 4 5.356 7 5.885 6 6.223 4 4.754 4 5.142 1 1 4.910 0 5.132 5 6.370 8 6.484 0 4.850 4 4.955 1 σθ
x=l/20 0.167 7 0.168 7 0.167 8 0.168 7 0.167 8 0.168 5 1/3- 0.129 9 0.129 9 0.130 0 0.130 0 0.130 0 0.130 2 1/3+ 5.432 4 5.436 4 5.436 0 5.440 0 5.430 4 5.433 9 0.5 5.042 8 5.046 0 5.046 4 5.049 6 5.040 4 5.044 1 2/3- 4.810 4 4.813 5 4.814 0 4.816 8 4.808 0 4.810 2 2/3+ 0.189 5 0.189 7 0.189 8 0.189 9 0.189 4 0.189 5 1 0.177 7 0.177 6 0.178 0 0.177 9 0.177 6 0.177 6 -
[1] 杨静宁, 马连生. 复合材料力学[M]. 北京: 国防工业出版社, 2014.YANG Jingning, MA Liansheng. Mechanics of Composite Materials[M]. Beijing: National Defense Industry Press, 2014. (in Chinese) [2] REISSNER E. The effect of transverse shear deformation on the bending of elastic plates[J]. Journal of Applied Mechanics, 1945, 12(2): A69-A77. [3] REDDY J N, ARCINIEGA R A. Shear deformation plate and shell theories: from stavsky to present[J]. Mechanics of Advanced Materials and Structures, 2004, 11(6): 535-582. [4] WU C P, LIU Y C. A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells[J]. Composite Structures, 2016, 147: 1-15. [5] KUMAR P, SRINIVASA C V. On buckling and free vibration studies of sandwich plates and cylindrical shells: a review[J]. Journal of Thermoplastic Composite Materials, 2020, 33(5): 673-724. [6] PUNERA D, KANT T. A critical review of stress and vibration analyses of functionally graded shell structures[J]. Composite Structures, 2019, 210: 787-809. [7] 范家让. 强厚度叠层板壳的精确理论[M]. 北京: 科学出版社, 1996.FAN Jiarang. Exact Theory of Laminated Thick Plates and Shells[M]. Beijing: Science Press, 1996. (in Chinese) [8] CHEN W Q, BIAN Z G, DING H J. Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells[J]. International Journal of Mechanical Sciences, 2004, 46(1): 159-171. [9] 边祖光, 陈伟球, 丁皓江. 正交各向异性功能梯度圆柱壳的自由振动[J]. 应用力学学报, 2004, 21(3): 75-78.BIAN Zuguang, CHEN Weiqiu, DING Haojiang. Free vibration of orthotropic functionally graded cylindrical shells[J]. Chinese Journal of Applied Mechanics, 2004, 21(3): 75-78. (in Chinese) [10] SHENG H Y, LI H P, XU H Y. A state space solution for the bending problem of thick laminated piezoelectric open cylindrical shell[J]. Journal of Chongqing University (English Edition), 2009, 8(2): 125-132. [11] TARN J Q, CHANG H H, TSENG W D. Axisymmetric deformation of a transversely isotropic cylindrical body: a Hamiltonian state-space approach[J]. Journal of Elasticity, 2009, 97(2): 131-154. [12] LIU D Y, KITIPORNCHAI S, CHEN W Q, et al. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell[J]. Composite Structures, 2018, 189: 560-569. [13] TONG B, LI Y Q, ZHU X, et al. Three-dimensional vibration analysis of arbitrary angle-ply laminated cylindrical shells using differential quadrature method[J]. Applied Acoustics, 2019, 146: 390-397. [14] SANTOS H, SOARES C M M, SOARES C A M, et al. A semi-analytical finite element model for the analysis of laminated 3D axisymmetric shells: bending, free vibration and buckling[J]. Composite Structures, 2005, 71(3/4): 273-281. [15] KULIKOV G M, PLOTNIKOVA S V. Heat conduction analysis of laminated shells by a sampling surfaces method[J]. Mechanics Research Communications, 2014, 55: 59-65. [16] KULIKOV G M, PLOTNIKOVA S V. Assessment of the sampling surfaces formulation for thermoelectroelastic analysis of layered and functionally graded piezoelectric shells[J]. Mechanics of Advanced Materials and Structures, 2017, 24(5): 392-409. [17] WU C P, JIANG R Y. A state space differential reproducing kernel method for the 3D analysis of FGM sandwich circular hollow cylinders with combinations of simply-supported and clamped edges[J]. Composite Structures, 2012, 94(11): 3401-3420. [18] LIEW K M, ZHAO X, FERREIRA A J M. A review of meshless methods for laminated and functionally graded plates and shells[J]. Composite Structures, 2011, 93(8): 2031-2041. [19] WU C P, LI H Y. RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions[J]. Composite Structures, 2013, 100: 592-608. [20] 盛宏玉, 高荣誉. 非均匀变温时两端固支叠层闭口厚柱壳的热应力分析[J]. 工程力学, 2000, 17(4): 117-123.SHENG Hongyu, GAO Rongyu. Thermal stress analysis for a thick laminated cylinder with two clamped edges under non-uniform temperature variation[J]. Engineering Mechanics, 2000, 17(4): 117-123. (in Chinese) [21] DING H J, WANG H M, CHEN W Q. A solution of a non-homogeneous orthotropic cylindrical shell for axisymmetric plane strain dynamic thermoelastic problems[J]. Journal of Sound and Vibration, 2003, 263(4): 815-829. [22] 刘艳红, 陈庆远, 卿光辉. 含固支边的压电层合开口圆柱壳的精确解法[J]. 机械强度, 2010, 32(6): 946-952.LIU Yanhong, CHEN Qingyuan, QING Guanghui. Analytical solution for laminated piezoelectric cylindrical open shells with clamped edges[J]. Journal of Mechanical Strength, 2010, 32(6): 946-952. (in Chinese) [23] 胡文锋, 刘一华. 含固支边矩形叠层厚板的状态空间新解法[J]. 力学学报, 2015, 47(5): 762-771.HU Wenfeng, LIU Yihua. A new state space solution for rectangular thick laminates with clamped edges[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 762-771. (in Chinese) [24] 胡文锋, 刘一华. 三边简支一边固支正交异性矩形叠层厚板的精确解[J]. 工程力学, 2016, 33(10): 44-51.HU Wenfeng, LIU Yihua. Exact solutions of orthotropic rectangular thick laminates with three edges simply supported and the other one clamped[J]. Engineering Mechanics, 2016, 33(10): 44-51. (in Chinese) [25] 胡文锋, 师雷, 王彪, 等. 两端固支叠层圆柱厚壳轴对称问题的精确解析解[J]. 应用力学学报, 2022, 39(4): 748-757.HU Wenfeng, SHI Lei, WANG Biao, et al. Exact analytical solutions for axisymmetric problem of laminated cylindrical thick shells with two clamped ends[J]. Chinese Journal of Applied Mechanics, 2022, 39(4): 748-757. (in Chinese) [26] YE J Q, SHENG H Y. Free-edge effect in cross-ply laminated hollow cylinders subjected to axisymmetric transverse loads[J]. International Journal of Mechanical Sciences, 2003, 45(8): 1309-1326. [27] MITTELSTEDT C, BECKER W. Free-edge effects in composite laminates[J]. Applied Mechanics Reviews, 2007, 60(5): 217-245. -