留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性相场模型的多参数反演问题

田瑜 杨柳 伊海鸿

田瑜, 杨柳, 伊海鸿. 非线性相场模型的多参数反演问题[J]. 应用数学和力学, 2025, 46(10): 1354-1366. doi: 10.21656/1000-0887.450160
引用本文: 田瑜, 杨柳, 伊海鸿. 非线性相场模型的多参数反演问题[J]. 应用数学和力学, 2025, 46(10): 1354-1366. doi: 10.21656/1000-0887.450160
TIAN Yu, YANG Liu, YI Haihong. Multi-Parameter Inverse Problems of the Nonlinear Phase Field Model[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1354-1366. doi: 10.21656/1000-0887.450160
Citation: TIAN Yu, YANG Liu, YI Haihong. Multi-Parameter Inverse Problems of the Nonlinear Phase Field Model[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1354-1366. doi: 10.21656/1000-0887.450160

非线性相场模型的多参数反演问题

doi: 10.21656/1000-0887.450160
基金项目: 

国家自然科学基金(61663018;11961042);甘肃省自然科学基金(22JR5RA341)

详细信息
    作者简介:

    田瑜(1998—),女,硕士生(E-mail: tianyuyu815@163.com );杨柳(1977—),女,教授,博士(通讯作者. E-mail: l_yang218@163.com).

    通讯作者:

    杨柳(1977—),女,教授,博士(通讯作者. E-mail: l_yang218@163.com).

  • 中图分类号: O175.26

Multi-Parameter Inverse Problems of the Nonlinear Phase Field Model

Funds: 

The National Science Foundation of China(61663018;11961042)

  • 摘要: 研究了在给定终端观测数据的附加条件下,同时反演非线性相场模型中两个与时间无关系数的反问题.与通常的抛物型方程不同,该文研究的是一个非线性抛物型方程组.首先,基于最优控制理论,将原问题转换成一个优化问题,通过构造相应的控制泛函,证明控制泛函极小元的存在性.其次,得到控制泛函极小元所满足的必要条件.最后,利用能量模估计的方法,成功地证明了控制泛函极小元的稳定性和唯一性.
  • DENG Z C, YANG L, YU J N, et al. Identifying the diffusion coefficient by optimization from the final observation[J]. Applied Mathematics and Computation,2013,219(9): 4410-4422.
    [2]柳冕, 程浩, 石成鑫. 一类非线性时间分数阶扩散方程反问题的变分型正则化[J]. 应用数学和力学, 2022,43(3): 341-35. (LIU Mian, CHENG Hao, SHI Chengxin. Variational regularization of the inverse problem of a class of nonlinear time-fractional diffusion equations[J]. Applied Mathematics and Mechanics,2022, 43(3): 341-35.(in Chinese))
    [3]YANG L, YU J N, LUO G W, et al. Reconstruction of a space and time dependent heat source from finite measurement data[J]. International Journal of Heat and Mass Transfer,2012,55(23/24): 6573-6581.
    [4]YANG F, FU C L. A simplified Tikhonov regularization method for determining the heat source[J]. Applied Mathematical Modelling,2010,34(11): 3286-3299.
    [5]刘继军. 不适定问题的正则化方法及应用[M]. 北京: 科学出版社, 2005.(LIU Jijun. Regularization Method of Ill-Posed Problems and Its Application[M]. Beijing: Science Press, 2005.(in Chinese))
    [6]TRIKI F. Coefficient identification in parabolic equations with final data[J]. Journal de Mathématiques Pures et Appliquées,2021,148: 342-359.
    [7]DENG Z C, YANG L. An inverse problem of identifying the coefficient of first-order in a degenerate parabolic equation[J]. Journal of Computational and Applied Mathematics,2011,235(15): 4404-4417.
    [8]尤云祥, 缪国平. 刚性目标形状反演的一种非线性最优化方法[J]. 应用数学和力学, 2003,24(10): 1090-1100. (YOU Yunxiang, MIAO Guoping. Numerical method for the shape reconstruction of a hard target[J]. Applied Mathematics and Mechanics, 2003,24(10): 1090-1100.(in Chinese))
    [9]许瑶瑶, 杨柳. 非线性-积分抛物型方程零阶项的识别问题[J]. 兰州交通大学学报(自然科学版), 2022,41(6): 121-126. (XU Yaoyao, YANG Liu. Identification of zero-order term of nonlinear-integral parabolic equations[J]. Journal of Lanzhou Jiaotong University(Natural Science),2022,41(6): 121-126.(in Chinese))
    [10]蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016,51(4): 127-134. (CAI Cao. An inverse problem of identifying the coefficient in a Kolmogorov type equation[J]. Journal of Shandong University(Natural Science), 2016,51(4): 127-134.(in Chinese))
    [11]温鑫亮. 基于积分观测条件反演退化抛物型方程的辐射系数[J]. 重庆理工大学学报(自然科学), 2020,34(10): 238-246.(WEN Xinliang. Reconstructing the radiative coefficient for a degenerate parabolic equation based on integral observation condition[J]. Journal of Chongqing University of Technology (Natural Science),2020,34(10): 238-246. (in Chinese))
    [12]周焕林, 严俊, 余波, 等. 识别含热源瞬态热传导问题的热扩散系数[J]. 应用数学和力学, 2018,39(2): 160-169.(ZHOU Huanlin,YAN Jun, YU Bo, et al. Identification of thermal diffusion coefficients for tran sient heat conduction problems with heat sources[J]. Applied Mathematics and Mechanics,2018,39(2) : 160-169.(in Chinese))
    [13]王凯阳, 吕少杰, 吴宏辉, 等. 金属凝固过程微观组织演化相场模型研究进展[J]. 矿物冶金与材料学报, 2023,30(11): 2095-2111.(WANG Kaiyang, L Shaojie, WU Honghui, el al. Recent research progress on the phase-field model of microstructural evolution during metal solidification[J]. International Journal of Minerals, Metallurgy and Materials,2023,30(11): 2095-2111. (in Chinese))
    [14]张更, 王巧, 沙立婷, 等. 相场模型及其在电化学储能材料中的应用[J]. 物理学报, 2020,69(22): 33-45.(ZHANG Geng, WANG Qiao, SHA Liting, et al. Phase-field model and its application in electrochemi-cal energy storage materials[J]. Acta Physica Sinica,2020,69(22): 33-45.(in Chinese))
    [15]HOFFMAN K H, JIANG L. Optimal control of a phase field model for solidification[J]. Numerical Functional Analysis and Optimization,1992,13(1/2): 11-27.
    [16]伍卓群, 尹景学, 王春朋. 椭圆与抛物型方程引论[M]. 北京: 科学出版社, 2003.(WU Zhuoqun, YIN Jingxue, WANG Chunpeng. Introduction to Elliptic and Parabolic Equations[M]. Beijing: Science Press, 2003.(in Chinese))
    [17]姜礼尚, 陈亚浙, 刘西垣, 等. 数学物理方程讲义[M]. 3版. 北京: 高等教育出版社, 2007.(JIANG Lishang, CHEN Yazhe, LIU Xiyuan, et al. Lecture Notes on Mathematical and Physical Equations[M]. 3rd ed. Beijing: Higher Education Press, 2007. (in Chinese))
  • 加载中
计量
  • 文章访问数:  30
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-30
  • 修回日期:  2024-06-27
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回