留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于导波和轻量化卷积神经网络的复合材料结构损伤识别方法

包文强 马济通 赵森 杨正岩

包文强, 马济通, 赵森, 杨正岩. 基于导波和轻量化卷积神经网络的复合材料结构损伤识别方法[J]. 应用数学和力学, 2025, 46(8): 1027-1036. doi: 10.21656/1000-0887.450162
引用本文: 包文强, 马济通, 赵森, 杨正岩. 基于导波和轻量化卷积神经网络的复合材料结构损伤识别方法[J]. 应用数学和力学, 2025, 46(8): 1027-1036. doi: 10.21656/1000-0887.450162
BAO Wenqiang, MA Jitong, ZHAO Sen, YANG Zhengyan. A Lightweight Convolutional Neural Network for Guided Wave Based Damage Detection in Composite Structures[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1027-1036. doi: 10.21656/1000-0887.450162
Citation: BAO Wenqiang, MA Jitong, ZHAO Sen, YANG Zhengyan. A Lightweight Convolutional Neural Network for Guided Wave Based Damage Detection in Composite Structures[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1027-1036. doi: 10.21656/1000-0887.450162

基于导波和轻量化卷积神经网络的复合材料结构损伤识别方法

doi: 10.21656/1000-0887.450162
基金项目: 

国家自然科学基金(12102075;62101090);中国科协青年人才托举工程(2022QNRC001);中央高校基本科研业务费(3132024236)

详细信息
    作者简介:

    包文强(1999—),男,硕士(E-mail: baowenqiang2022@163.com); 杨正岩(1993—),女,教授,博士(通讯作者. E-mail: zyyang1993@jiangnan.edu.cn).

    通讯作者:

    杨正岩(1993—),女,教授,博士(通讯作者. E-mail: zyyang1993@jiangnan.edu.cn).

  • 中图分类号: V11

A Lightweight Convolutional Neural Network for Guided Wave Based Damage Detection in Composite Structures

Funds: 

The National Science Foundation of China(12102075;62101090)

  • 摘要: 针对有限计算资源下复合材料的实时监测问题,该文提出了基于超声导波和轻量化卷积神经网络(one-dimension convolutional neural network-deformable convolution attention,CDCA)的损伤实时识别方法.在该方法中,为了压缩多个路径的导波信号,首先提出了改进差分驱动的平均聚合(improved differential-driven piecewise aggregate approximation, IDPAA)算法,利用该方法可以显著减少计算量;其次,提出了轻量化可变形卷积注意力(deformable convolution attention,DCA)机制,让模型聚焦在与损伤相关的像素级特征,从而实现更高效、准确的结构损伤识别;最后,通过结合一维卷积神经网络(one-dimension convolutional neural network,1D-CNN)和DCA机制,构建了CDCA模型.该模型不仅可以在有限资源环境下运行,还能实现含噪声工况下的损伤实时识别.在真实数据集上验证了所提出方法的有效性.试验结果表明,所提出的损伤识别方法有较高的损伤识别准确性,准确率可达98%,并且大幅提高了模型计算效率,相较于其他先进深度学习模型具有显著的优势.
  • [2]YUN H, WANG R, RAYHANA R, et al. WaveCLR: contrastive learning of guided wave representations for composite damage identification[J].IEEE Transactions on Instrumentation and Measurement,2024,73: 2515914.
    ZHANG Z, LIU M, LI Q, et al. Visualized characterization of diversified defects in thick aerospace composites using ultrasonic B-scan[J].Composites Communications,2020,22: 100435.
    [3]BABU J, SUNNY T, PAUL N A, et al. Assessment of delamination in composite materials: a review[J].Proceedings of the Institution of Mechanical Engineers (Part B):Journal of Engineering Manufacture,2016,230(11): 1990-2003.
    [4]LI B, ZHANG L, YANG B. Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particlesvia selective-laser-melting/remelting[J].Composites Communications,2020,19: 56-60.
    [5]YUN H, FENG K, RAYHANA R, et al. A multidimensional data fusion neural network for damage localization using ultrasonic guided wave[J].IEEE Transactions on Instrumentation and Measurement,2023,72: 2522912.
    [6]姚浩, 夏桂然, 刘泽佳, 等. 基于机器学习的黏钢构件黏接层缺陷识别方法研究[J]. 应用数学和力学, 2024,45(4): 429-442. (YAO Hao, XIA Guiran, LIU Zejia, et al. A defect identification method for bonding layers of adhesive steel members based on machine learning[J].Applied Mathematics and Mechanics,2024,45(4): 429-442. (in Chinese))
    [7]LIM H J, SOHN H. Online stress monitoring technique based on lamb-wave measurements and a convolutional neural network under static and dynamic loadings[J].Experimental Mechanics,2020,60(2): 171-179.
    [8]LIAO Y, QING X, WANG Y, et al. Damage localization for composite structure using guided wave signals with Gramian angular field image coding and convolutional neural networks[J].Composite Structures,2023,312: 116871.
    [9]GORGIN R, LUO Y, WU Z. Environmental and operational conditions effects on Lamb wave based structural health monitoring systems: a review[J].Ultrasonics,2020,105: 106114.
    [10]LIU K, MA S, WU Z, et al. A novel probability-based diagnostic imaging with weight compensation for damage localization using guided waves[J].Structural Health Monitoring,2016,15(2): 162-173.
    [11]ZHAO X, GAO H, ZHANG G, et al. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network, Ⅰ: defect detection, localization and growth monitoring[J].Smart Materials and Structures,2007,16(4): 1208-1217.
    [12]ANGRISANI L, BACCIGALUPI A, SCHIANO L M R. Ultrasonic time-of-flight estimation through unscented Kalman filter[J].IEEE Transactions on Instrumentation and Measurement,2006,55(4): 1077-1084.
    [13]SHAO W, SUN H, WANG Y, et al. A multi-level damage classification technique of aircraft plate structures using Lamb wave-based deep transfer learning network[J].Smart Materials and Structures,2022,31(7): 075019.
    [14]LIAO Y, WANG Y, ZENG X, et al. Multiscale 1-DCNN for damage localization and quantification using guided waves with novel data fusion technique and new self-attention module[J].IEEE Transactions on Industrial Informatics,2024,20(1): 492-502.
    [15]SIKDAR S, LIU D, KUNDU A. Acoustic emission data based deep learning approach for classification and detection of damage-sources in a composite panel[J].Composites (Part B):Engineering,2022,228: 109450.
    [16]RAUTELA M, GOPALAKRISHNAN S. Ultrasonic guided wave based structural damage detection and localization using model assisted convolutional and recurrent neural networks[J].Expert Systems With Applications,2021,167: 114189.
    [17]ZHANG H, HUA J, LIN J, et al. Damage localization with Lamb waves using dense convolutional sparse coding network[J].Structural Health Monitoring,2015,22: 1180-1192.
    [18]张巧灵, 高淑萍, 何迪, 等. 基于时间序列的混合神经网络数据融合算法[J]. 应用数学和力学, 2021,42(1): 82-91. (ZHANG Qiaoling, GAO Shuping, HE Di, et al. A hybrid neural network data fusion algorithm based on time series[J].Applied Mathematics and Mechanics,2021,42(1): 82-91. (in Chinese))
    [19]DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//〖STBX〗2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 764-773.
    [20]RAVENSCROFT W, GOETZE S, HAIN T. Deformable temporal convolutional networks for monaural noisy reverberant speech separation[C]//2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).Rhodes Island: IEEE, 2023: 1-5.
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-31
  • 修回日期:  2024-09-18
  • 网络出版日期:  2025-09-10

目录

    /

    返回文章
    返回