留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人工神经网络的共振吸声超材料声学性能快速预测及结构优化设计

高兆瑞 李铮 姜永烽 沈承 孟晗

高兆瑞, 李铮, 姜永烽, 沈承, 孟晗. 基于人工神经网络的共振吸声超材料声学性能快速预测及结构优化设计[J]. 应用数学和力学, 2024, 45(8): 1058-1069. doi: 10.21656/1000-0887.450170
引用本文: 高兆瑞, 李铮, 姜永烽, 沈承, 孟晗. 基于人工神经网络的共振吸声超材料声学性能快速预测及结构优化设计[J]. 应用数学和力学, 2024, 45(8): 1058-1069. doi: 10.21656/1000-0887.450170
GAO Zhaorui, LI Zheng, JIANG Yongfeng, SHEN Cheng, MENG Han. Acoustic Performance Rapid Prediction and Structural Optimization for Resonant SoundAbsorbing Metamaterials Based on Artificial Neural Networks[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1058-1069. doi: 10.21656/1000-0887.450170
Citation: GAO Zhaorui, LI Zheng, JIANG Yongfeng, SHEN Cheng, MENG Han. Acoustic Performance Rapid Prediction and Structural Optimization for Resonant SoundAbsorbing Metamaterials Based on Artificial Neural Networks[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1058-1069. doi: 10.21656/1000-0887.450170

基于人工神经网络的共振吸声超材料声学性能快速预测及结构优化设计

doi: 10.21656/1000-0887.450170
基金项目: 

国家自然科学基金(12202183;12202188;52361165626)

国家重点研发计划(2023YFB4604800)

详细信息
    作者简介:

    高兆瑞(2000—),男,硕士生(E-mail: gaozr123@nuaa.edu.cn);沈承(1986—),男,副教授,博士,硕士生导师(通讯作者. E-mail: cshen@nuaa.edu.cn);孟晗(1989—),女,教授,博士,博士生导师(通讯作者. E-mail: menghan@nuaa.edu.cn).

    通讯作者:

    孟晗(1989—),女,教授,博士,博士生导师(通讯作者. E-mail: menghan@nuaa.edu.cn).

  • 中图分类号: TB535|TP183

Acoustic Performance Rapid Prediction and Structural Optimization for Resonant SoundAbsorbing Metamaterials Based on Artificial Neural Networks

Funds: 

The National Science Foundation of China((12202183;12202188;52361165626)

  • 摘要: 针对共振吸声超材料声学性能快速预测及结构优化设计需求,提出了一种基于人工神经网络的共振吸声超材料性能预测方法.首先,建立了由微穿孔板和Helmholtz共振腔组成的多层穿孔型共振吸声超材料的理论模型,并通过仿真与实验验证其正确性;随后,通过理论模型生成数据集,并以此为基础,采用BP(back propagation)神经网络原理,搭建了结构特征参量与声学性能的人工神经网络模型;之后,将训练后的人工神经网络模型与遗传算法相结合,对共振吸声超材料进行声学性能最优化设计.结果表明:训练后的人工神经网络模型可以对目标结构的吸声性能进行准确预测,并且预测效率相较理论模型提高50%以上;人工神经网络模型与优化算法的结合不仅能提高优化效率,优化后的结构也具有良好的低频宽带吸声性能.人工神经网络为大规模结构性能预测计算提供了便利,在超材料等结构设计及优化领域具有广阔的应用前景.
  • [2]MAA D Y. Theory of microslit absorbers[J].Acta Acustica, 2000, 25(6): 481-485.
    郭梦媛, 刘崇锐, 苏文斌, 等. 高阶微穿孔型超材料低频宽带吸声机理[J]. 西安交通大学学报, 2024,58(4): 192-199

    , 220.(GUO Mengyuan, LIU Chongrui, SU Wengbin, et al. Low-frequency broadband absorption mechanism of high-order micro-perforated meta-materials[J].Journal of Xi’an Jiaotong University, 2024, 58(4): 192-199, 220.(in Chinese))
    [3]MAA D Y, LIU K. Sound absorption characteristics of microperforated absorber for random incidence[J].Acta Acustica, 2000, 25(4): 289-296.
    [4]LALY Z, ATALLA N, MESLIOUI S A. Acoustical modeling of micro-perforated panel at high sound pressure levels using equivalent fluid approach[J].Journal of Sound and Vibration, 2018, 427: 134-158.
    [5]GAI X L, XING T, LI X H, et al. Sound absorption of microperforated panel with L shape division cavity structure[J].Applied Acoustics, 2017, 122: 41-50.
    [6]LEE D H, KWON Y P. Estimation of the absorption performance of multiple layer perforated panel systems by transfer matrix method[J].Journal of Sound and Vibration, 2004, 278(4): 847-860.
    [7]GAI X L, XING T, LI X H, et al. Sound absorption properties of microperforated panel with membrane cell and mass blocks composite structure[J].Applied Acoustics, 2018, 137: 98-107.
    [8]LIU X W, YU C L, XIN F X. Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption[J].Composite Structures, 2021, 263: 113647.
    [9]ZHANG H J, WANG Y, LU K Y, et al. SAP-net: deep learning to predict sound absorption performance of metaporous materials[J].Materials & Design, 2021, 212: 110156.
    [10]YANG H T, ZHANG H J, WANG Y, et al. Prediction of sound absorption coefficient for metaporous materials with convolutional neural networks[J].Applied Acoustics, 2022, 200: 109052.
    [11]PAN B R, SONG X, XU J J, et al. Accelerated inverse design of customizable acoustic metaporous structures using a CNN-GA-based hybrid optimization framework[J].Applied Acoustics, 2023, 210: 109445.
    [12]IANNACE G, CIABURRO G, TREMATERRA A. Modelling sound absorption properties of broom fibers using artificial neural networks[J].Applied Acoustics, 2020, 163: 107239.
    [13]SHEN X M, BAI P F, YANG X C, et al. Low frequency sound absorption by optimal combination structure of porous metal and microperforated panel[J].Applied Sciences-Basel, 2019, 9(7): 1507.
    [14]TANG Y F, LI F H, XIN F X, et al. Heterogeneously perforated honeycomb-corrugation hybrid sandwich panel as sound absorber[J].Materials & Design, 2017, 134: 502-512.
    [15]TANG Y F, XIN F X, HUANG L X, et al. Deep subwavelength acoustic metamaterial for low-frequency sound absorption[J].Europhysics Letters, 2017, 118(4): 44002.
    [16]WANG S B, WANG B, FAN J, et al. Inversion of equivalent parameters of acoustic coating based on genetic algorithm[J].Journal of Ship Mechanics, 2023, 27(3): 456-469.
    [17]JIANG Y F, SHEN C, MENG H, et al. Design and optimization of micro-perforated ultralight sandwich structure with N-type hybrid core for broadband sound absorption[J].Applied Acoustics, 2023, 202: 109184.
    [18]王飞萌, 王良模, 王陶, 等. 微穿孔板-三聚氰胺吸音海绵-空腔复合结构声学性能优化设计[J]. 北京化工大学学报(自然科学版), 2022, 49(1): 113-121.(WANG Feimeng, WANG Liangmo, WANG Tao, et al. Optimization of the acoustic performance of micro-perforated panel-melamine sound-absorbing sponge-cavity composite structures[J].Journal of Beijing University of Chemical Technology (Natural Science), 2022, 49(1): 113-121.(in Chinese))
    [19]LI H X. Fuzzy logic systems are equivalent to feedforward neural networks[J].Science in China (Series E): Technological Sciences, 2000, 43(1): 42-54.
    [20]LING S H, LAM H K, LEUNG F H F, et al. A genetic algorithm based neural-tuned neural network[C]//Proceedings of the 〖STBX〗29th Annual Conference of the IEEE Industrial Electronics Society. Roanoke, America, 2003: 2423-2428.
    [21]WANG X Y, ZHANG Y. Chaotic diagonal recurrent neural network[J].Chinese Physics B, 2012, 21(3): 038703.
    [22]WEN L, QIU Z W, QI R N. Passenger capacity prediction based on genetic neural network[C]//Proceedings of the 1st International Symposium on Information Engineering and Electronic Commerce. Ternopil, Ukraine, 2009: 696-700.
    [23]姚浩, 夏桂然, 刘泽佳, 等. 基于机器学习的黏钢构件黏接层缺陷识别方法研究[J]. 应用数学和力学, 2024, 45(4): 429-442.(YAO Hao, XIA Guiran, LIU Zejia, et al. A defect identification method for bonding layers of adhesive steel members based on machine learning[J].Applied Mathematics and Mechanics, 2024, 45(4): 429-442.(in Chinese))
    [24]CIABURRO G, IANNACE G. Modeling acoustic metamaterials based on reused buttons using data fitting with neural network[J].Journal of the Acoustical Society of America, 2021, 150(1): 51-63.
    [25]CIABURRO G, IANNACE G. Membrane-type acoustic metamaterial using cork sheets and attached masses based on reused materials[J].Applied Acoustics, 2022, 189: 108605.
    [26]LUO Z H, LI T, YAN Y W, et al. Prediction of sound insulation performance of aramid honeycomb sandwich panel based on artificial neural network[J].Applied Acoustics, 2022, 190: 108656.
    [27]DOUTRES O, ATALLA N, OSMAN H. Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions[J].Journal of the Acoustical Society of America, 2015, 137(6): 3502-3513.
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  20
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-06-11
  • 网络出版日期:  2024-09-06

目录

    /

    返回文章
    返回