留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解两区域变分不等式的自适应交替方向乘子法

袁星月 崔席勇 冉瑞生 张守贵

袁星月, 崔席勇, 冉瑞生, 张守贵. 求解两区域变分不等式的自适应交替方向乘子法[J]. 应用数学和力学, 2025, 46(7): 916-925. doi: 10.21656/1000-0887.450171
引用本文: 袁星月, 崔席勇, 冉瑞生, 张守贵. 求解两区域变分不等式的自适应交替方向乘子法[J]. 应用数学和力学, 2025, 46(7): 916-925. doi: 10.21656/1000-0887.450171
YUAN Xingyue, CUI Xiyong, RAN Ruisheng, ZHANG Shougui. A Self-Adaptive Alternating Direction Multiplier Method for Variational Inequality in 2 Domains[J]. Applied Mathematics and Mechanics, 2025, 46(7): 916-925. doi: 10.21656/1000-0887.450171
Citation: YUAN Xingyue, CUI Xiyong, RAN Ruisheng, ZHANG Shougui. A Self-Adaptive Alternating Direction Multiplier Method for Variational Inequality in 2 Domains[J]. Applied Mathematics and Mechanics, 2025, 46(7): 916-925. doi: 10.21656/1000-0887.450171

求解两区域变分不等式的自适应交替方向乘子法

doi: 10.21656/1000-0887.450171
基金项目: 

国家自然科学基金 11971085

详细信息
    作者简介:

    袁星月(2000—), 女, 硕士生(E-mail: 2505944022@qq.com)

    通讯作者:

    张守贵(1973—), 男, 教授, 博士, 硕士生导师(通讯作者. E-mail: shgzhang@cqnu.edu.cn)

  • 中图分类号: O241.82

A Self-Adaptive Alternating Direction Multiplier Method for Variational Inequality in 2 Domains

  • 摘要: 针对一类定义在两个区域的接触问题,提出了求其数值解的自适应交替方向乘子法. 由该两区域的变分问题,得到一个由不等式约束的极小值问题,通过引入接触边界上的辅助变量得到等价的鞍点问题. 采用交替方向乘子法求鞍点问题的数值解,每次迭代依次求解显式的辅助变量、一个线性问题及更新Lagrange乘子. 基于自适应法则及迭代函数自动选取罚参数,从而提出了自适应交替方向乘子法. 证明了算法的收敛性,算例的数值结果展示了所给算法的有效性.
  • 图  1  模型问题的区域

    Figure  1.  The domain of the model problem

    图  2  接触边界Γcu2/n2um的数值解

    Figure  2.  Numerical solutions of u2/n2 and um on Γc

    表  1  3种算法的CPU运行时间

    Table  1.   CPU time for each method

    ρ SSNM ADMM SADMM
    h=1/20 h=1/40 h=1/80 h=1/20 h=1/40 h=1/80 h=1/20 h=1/40 h=1/80
    1 0.844 4 1.879 3 3.967 4 5.990 2 19.635 7 86.211 5 0.458 2 0.878 8 2.095 3
    10 0.910 3 1.600 1 5.278 4 >24.688 9 >53.579 2 >121.349 8 0.452 4 0.899 6 2.032 1
    102 0.936 4 1.838 3 5.435 9 >25.859 4 >54.146 4 >115.774 4 0.494 3 1.016 8 2.262 3
    103 0.933 2 1.858 6 5.506 8 >25.991 1 >52.625 0 >117.524 3 0.545 8 1.076 1 2.500 6
    104 0.898 4 1.729 7 5.546 1 >26.809 8 >53.330 9 >127.610 5 0.545 2 1.054 3 2.384 3
    下载: 导出CSV

    表  2  3种算法的迭代次数

    Table  2.   The numbers of iterations for each method

    ρ SSNM ADMM SADMM
    h=1/20 h=1/40 h=1/80 h=1/20 h=1/40 h=1/80 h=1/20 h=1/40 h=1/80
    1 56 70 71 477 783 1 460 44 47 58
    10 70 61 94 - - - 45 49 59
    102 72 67 97 - - - 50 53 63
    103 72 68 97 - - - 54 58 71
    104 72 68 97 - - - 55 57 69
    下载: 导出CSV
  • [1] TANG W J, HU H Y, SHEN L J. On the coupling of boundary integral and finite element methods for Signorini problems[J]. Journal of Computational Mathematics, 1998, 16 (6): 561-570.
    [2] DOSTÁL Z, NETO F A M G G, SANTOS S A. Duality-based domain decomposition with natural coarse-space for variational inequalities[J]. Journal of Computational and Applied Mathematics, 2000, 126 (1/2): 397-415.
    [3] DOSTÁL Z, HORÁK D. Theoretically supported scalable FETI for numerical solution of variational inequalities[J]. SIAM Journal on Numerical Analysis, 2007, 45 (2): 500-513.
    [4] PENG Z Y, LI D, ZHAO Y, et al. An accelerated subgradient extragradient algorithm for solving bilevel variational inequality problems involving non-Lipschitz operator[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 127 : 107549.
    [5] PENG Z Y, PENG Z Y, CAI G, et al. Inertial subgradient extragradient method for solving pseudomonotone variational inequality problems in Banach spaces[J]. Applicable Analysis, 2024, 103 (10): 1769-1789.
    [6] DOSTÁL Z, HORÁK D, STEFANICA D. A scalable FETI-DP algorithm for a semi-coercive variational inequality[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196 (8): 1369-1379.
    [7] DOSTÁL Z, HORÁK D, STEFANICA D. A scalable FETI-DP algorithm with non-penetration mortar conditions on contact interface[J]. Journal of Computational and Applied Mathematics, 2009, 231 (2): 577-591.
    [8] DOSTÁL Z, HORÁK D, KRUŽÍK J, et al. Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities[J]. Numerical Algorithms, 2022, 91 (2): 773-801.
    [9] LEE J. Two domain decomposition methods for auxiliary linear problems of a multibody elliptic variational inequality[J]. SIAM Journal on Scientific Computing, 2013, 35 (3): A1350-A1375.
    [10] BOUCHALA J, DOSTÁL Z, SADOWSKÁ M. Theoretically supported scalable BETI method for variational inequalities[J]. Computing, 2008, 82 (1): 53-75.
    [11] IKRAM B, SAMIRA S. Generalized Schwarz algorithm for a class of variational inequalities[J]. Applied Mathematics & Information Sciences, 2021, 15 (1): 9-15.
    [12] CHORFI A, KOKO J. Alternating direction method of multiplier for the unilateral contact problem with an automatic penalty parameter selection[J]. Applied Mathematical Modelling, 2020, 78 : 706-723.
    [13] KOKO J. Uzawa block relaxation domain decomposition method for a two-body frictionless contact problem[J]. Applied Mathematics Letters, 2009, 22 (10): 1534-1538.
    [14] ZHANG S G, GUO N X. Uzawa block relaxation method for free boundary problem with unilateral obstacle[J]. International Journal of Computer Mathematics, 2021, 98 (4): 671-689.
    [15] GLOWINSKI R. Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2015.
    [16] 王霄婷, 龙宪军, 彭再云. 求解非单调变分不等式的一种二次投影算法[J]. 应用数学和力学, 2022, 43 (8): 927-934. doi: 10.21656/1000-0887.420414

    WANG Xiaoting, LONG Xianjun, PENG Zaiyun. A double projection algorithm for solving non-monotone variational inequalities[J]. Applied Mathematics and Mechanics, 2022, 43 (8): 927-934. (in Chinese) doi: 10.21656/1000-0887.420414
    [17] 张霖森, 程兰, 张守贵. 曲率障碍下四阶变分不等式的交替方向乘子法[J]. 应用数学和力学, 2023, 44 (5): 595-604. doi: 10.21656/1000-0887.430243

    ZHANG Linsen, CHENG Lan, ZHANG Shougui. An alternating direction multiplier method for 4th-order variational inequalities with curvature obstacle[J]. Applied Mathematics and Mechanics, 2023, 44 (5): 595-604. (in Chinese) doi: 10.21656/1000-0887.430243
    [18] 袁欣, 张守贵. 无摩擦弹性接触问题的自适应交替方向乘子法[J]. 应用数学和力学, 2023, 44 (8): 989-998. doi: 10.21656/1000-0887.440079

    YUAN Xin, ZHANG Shougui. A self-adaptive alternating direction multiplier method for frictionless elastic contact problems[J]. Applied Mathematics and Mechanics, 2023, 44 (8): 989-998. (in Chinese) doi: 10.21656/1000-0887.440079
    [19] 王欣, 郭科. 一类非凸优化问题广义交替方向法的收敛性[J]. 应用数学和力学, 2018, 39 (12): 1410-1425.

    WANG Xin, GUO Ke. Convergence of the generalized alternating direction method of multipliers for a class of nonconvex optimization problems[J]. Applied Mathematics and Mechanics, 2018, 39 (12): 1410-1425. (in Chinese)
    [20] ZHANG S G, YAN Y Y, RAN R S. Path-following and semismooth Newton methods for the variational inequality arising from two membranes problem[J]. Journal of Inequalities and Applications, 2019, 2019 (1): 1.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-11-09
  • 网络出版日期:  2025-07-30
  • 刊出日期:  2025-07-01

目录

    /

    返回文章
    返回