留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能梯度材料疲劳断裂的相场模型研究

陈荣富 邵玉龙 任占威

陈荣富, 邵玉龙, 任占威. 功能梯度材料疲劳断裂的相场模型研究[J]. 应用数学和力学, 2025, 46(7): 893-903. doi: 10.21656/1000-0887.450179
引用本文: 陈荣富, 邵玉龙, 任占威. 功能梯度材料疲劳断裂的相场模型研究[J]. 应用数学和力学, 2025, 46(7): 893-903. doi: 10.21656/1000-0887.450179
CHEN Rongfu, SHAO Yulong, REN Zhanwei. Research on Phase-Field Model for Fatigue Fracture of Functionally Graded Materials[J]. Applied Mathematics and Mechanics, 2025, 46(7): 893-903. doi: 10.21656/1000-0887.450179
Citation: CHEN Rongfu, SHAO Yulong, REN Zhanwei. Research on Phase-Field Model for Fatigue Fracture of Functionally Graded Materials[J]. Applied Mathematics and Mechanics, 2025, 46(7): 893-903. doi: 10.21656/1000-0887.450179

功能梯度材料疲劳断裂的相场模型研究

doi: 10.21656/1000-0887.450179
基金项目: 

河北省自然科学基金 A2022203045

详细信息
    作者简介:

    陈荣富(1999—),男,硕士生(E-mail: 2214691379@qq.com)

    通讯作者:

    邵玉龙(1988—),男,讲师,博士,硕士生导师(通讯作者. E-mail: yulong-shao@ysu.edu.cn)

  • 中图分类号: O346.1+1

Research on Phase-Field Model for Fatigue Fracture of Functionally Graded Materials

  • 摘要: 功能梯度材料参数的复杂性导致该材料具有复杂的应力场,给其疲劳断裂的数值分析带来了一定的困难. 相场模型不需要额外的断裂准则即能模拟复杂的断裂问题(如裂纹扩展等),该文通过在相场模型中引入疲劳函数对其断裂能进行退化,将功能梯度材料的混合相场模型拓展至疲劳断裂问题,发展了功能梯度材料的疲劳断裂相场模型,并分析了其裂纹扩展驱动力. 揭示了相场模型下,功能梯度材料的疲劳裂纹扩展受控于应变能历程、临界能量释放率和疲劳退化函数的机制,为其结构设计提供了一定的指导意义.
  • 图  1  计算模型示意图(单位:mm)

    Figure  1.  Schematic diagram of the simulation model (unit: mm)

    图  2  单边裂纹板的载荷-位移曲线及最终裂纹路径

    Figure  2.  Load-displacement curves and the final crack path of the single-edge cracked plate

    图  3  双层矩形板的计算模型及循环载荷

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  The computational model and the cyclic load of double-layer rectangular plate

    图  4  矩形板裂纹路径对比

    Figure  4.  Comparison of the crack paths of the rectangular plate

    图  5  中心裂纹板的计算模型及循环载荷

    Figure  5.  The computational model and the cyclic load of the plate with a center crack

    图  6  中心裂纹板在不同循环周次下的裂纹扩展

    Figure  6.  Crack propagations at different numbers of cycles for the plate with a center crack

    图  7  中心裂纹板的裂纹扩展驱动力分布

    Figure  7.  The distribution of crack propagation driving forces of the plate with a center crack

    图  8  单边裂纹板的计算模型示意图(单位:mm)

    Figure  8.  Schematic diagram of the simulation model for the single-edge craked plate (unit: mm)

    图  9  单边裂纹板循环载荷

    Figure  9.  Cyclic loads for the single-edge cracked plate

    图  10  单边裂纹板的最终裂纹路径

    Figure  10.  The final crack paths of the single-edge cracked plate

    图  11  单边裂纹板的裂纹扩展驱动力分布

    Figure  11.  The distribution of crack propagation driving forces of the single-edge cracked plate

    图  12  共线双裂纹板的计算模型及循环载荷

    Figure  12.  The computational model and the cyclic load of the plate with 2 collinear cracks

    图  13  共线双裂纹板在不同循环周次下的裂纹扩展

    Figure  13.  Crack propagations at different numbers of cycles for the plate with 2 collinear cracks

    图  14  共线双裂纹板的裂纹扩展曲线

    Figure  14.  Crack growth curves for the plate with 2 collinear cracks

    图  15  共线双裂纹板的裂纹扩展驱动力分布

    Figure  15.  The distribution of crack propagation driving forces of the plate with 2 collinear cracks

  • [1] 李信, 刘海昌, 滕元成, 等. 功能梯度材料的研究现状及展望[J]. 材料导报, 2012, 26(1): 370-373.

    LI Xin, LIU Haichang, TENG Yuancheng, et al. Research status and future directions on functional gradient materials[J]. Materials Reports, 2012, 26(1): 370-373. (in Chinese)
    [2] 韩杰才, 徐丽, 王保林, 等. 梯度功能材料的研究进展及展望[J]. 固体火箭技术, 2004, 27(3): 207-215.

    HAN Jiecai, XU Li, WANG Baolin, et al. Progress and prospects of functional gradient materials[J]. Journal of Solid Rocket Technology, 2004, 27(3): 207-215. (in Chinese)
    [3] 仲政, 吴林志, 陈伟球. 功能梯度材料与结构的若干力学问题研究进展[J]. 力学进展, 2010, 40(5): 528-541.

    ZHONG Zheng, WU Linzhi, CHEN Weiqiu. Progress in the study on mechanics problems of functionally graded materials and structures[J]. Advances in Mechanics, 2010, 40(5): 528-541. (in Chinese)
    [4] 孙烨丽, 沈璐璐, 杨博. 功能梯度板中Griffith裂纹尖端应力场的三维解析研究[J]. 应用数学和力学, 2021, 42(1): 36-48. doi: 10.21656/1000-0887.410143

    SUN Yeli, SHEN Lulu, YANG Bo. 3D analytical solutions of stress fields at Griffith crack tips in functionally graded plates[J]. Applied Mathematics and Mechanics, 2021, 42(1): 36-48. (in Chinese) doi: 10.21656/1000-0887.410143
    [5] CARPINTERI A, PAGGI M, PUGNO N. An analytical approach for fracture and fatigue in functionally graded materials[J]. International Journal of Fracture, 2006, 141(3): 535-547.
    [6] 郭荣鑫, 索玉霞, 牛治亮, 等. Cu/WCp叠层功能梯度材料疲劳裂纹扩展速率的数值模拟[J]. 材料科学与工程学报, 2019, 37(6): 916-922.

    GUO Rongxin, SUO Yuxia, NIU Zhiliang, et al. Numerical simulation of fatigue crack growth in Cu/WCp laminated functionally graded materials[J]. Journal of Materials Science and Engineering, 2019, 37(6): 916-922. (in Chinese)
    [7] BHATTACHARYA S, SINGH I V, MISHRA B K. Fatigue-life estimation of functionally graded materials using XFEM[J]. Engineering With Computers, 2013, 29(4): 427-448.
    [8] BHATTACHARYA S, SINGH I V, MISHRA B K. Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM[J]. International Journal of Fracture, 2013, 183(1): 81-97.
    [9] KUMAR M, SINGH I V, MISHRA B K. Fatigue crack growth simulations of plastically graded materials using XFEM and J-integral decomposition approach[J]. Engineering Fracture Mechanics, 2019, 216: 106470.
    [10] PATHAK H. Three-dimensional quasi-static fatigue crack growth analysis in functionally graded materials (FGMs) using coupled FE-XEFG approach[J]. Theoretical and Applied Fracture Mechanics, 2017, 92: 59-75.
    [11] PANTM, BHATTACHARYA S. Fatigue crack growth analysis of functionally graded materials by EFGM and XFEM[J]. International Journal of Computational Methods, 2017, 14(1): 1750004.
    [12] PANT M, SHARMA K, BHATTACHARYA S. Application of EFGM and XFEM for fatigue crack growth analysis of functionally graded materials[J]. Procedia Engineering, 2017, 173: 1231-1238.
    [13] FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342.
    [14] ALESSI R, VIDOLI S, DE LORENZIS L. A phenomenological approach to fatigue with a variational phase-field model: the one-dimensional case[J]. Engineering Fracture Mechanics, 2018, 190: 53-73.
    [15] CARRARA P, AMBATI M, ALESSI R, et al. A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112731.
    [16] HASAN M M, BAXEVANIS T. A phase-field model for low-cycle fatigue of brittle materials[J]. International Journal of Fatigue, 2021, 150: 106297.
    [17] ALESSI R, ULLOA J. Endowing Griffith's fracture theory with the ability to describe fatigue cracks[J]. Engineering Fracture Mechanics, 2023, 281: 109048.
    [18] SCHREIBERC, KUHN C, MVLLER R, et al. A phase field modeling approach of cyclic fatigue crack growth[J]. International Journal of Fracture, 2020, 225(1): 89-100.
    [19] AMENDOLA G, FABRIZIO M, GOLDEN J M. Thermomechanics of damage and fatigue by a phase field model[J]. Journal of Thermal Stresses, 2016, 39(5): 487-499.
    [20] KRISTENSEN P K, MARTÍNEZ-PAÑEDA E. Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102446.
    [21] LI X, ZHOU C, XING C, et al. A phase-field fracture model for fatigue behavior in fiber-reinforced composites[J]. International Journal of Mechanical Sciences, 2024, 269: 108989.
    [22] SI Z F, YU T T, FANG W H, et al. An adaptive multi-patch isogeometric phase-field model for fatigue fracture[J]. International Journal of Mechanical Sciences, 2024, 271: 109146.
    [23] 赵超. 功能梯度材料断裂行为的相场模拟研究[D]. 武汉: 华中科技大学, 2020.

    ZHAO Chao. Study on phase field simulation of fracture behavior of functionally graded materials[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese)
    [24] 曾若愚. 形状记忆合金疲劳断裂行为的相场法研究[D]. 武汉: 华中科技大学, 2022.

    ZENG Ruoyu. Phase field study on the fatigue fracture behavior of shape memory alloys[D]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese)
    [25] SIDHARTH P C, RAO B N. Phase-field modeling of brittle fracture in functionally graded materials using exponential finite elements[J]. Engineering Fracture Mechanics, 2023, 291: 109576.
    [26] SIMOES M, BRAITHWAITE C, MAKAYA A, et al. Modelling fatigue crack growth in shape memory alloys[J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(4): 1243-1257.
    [27] AMBATI M, GERASIMOV T, DE LORENZIS L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405.
    [28] MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45/46/47/48): 2765-2778.
    [29] TORABI J, ANSARI R. Crack propagation in functionally graded 2D structures: a finite element phase-field study[J]. Thin-Walled Structures, 2020, 151: 106734.
    [30] BHATTACHARYA S, SINGH I V, MISHRA B K, et al. Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM[J]. Computational Mechanics, 2013, 52(4): 799-814.
  • 加载中
图(15)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 修回日期:  2024-06-26
  • 网络出版日期:  2025-07-30
  • 刊出日期:  2025-07-01

目录

    /

    返回文章
    返回