Numerical Study on Flow and Heat Transfer Characteristics of the Molten Salt Single Tank Heat Storage Process
-
摘要: 针对储热技术在新能源消纳领域的应用背景,该文设计了一种储换热一体式熔盐单罐,通过数值模拟研究了单罐蓄热特性及熔盐在蓄热过程中的传热规律,探讨了螺旋管间距、布置位置等对蓄热过程的影响规律. 研究结果表明:熔盐温度在蓄热过程中逐渐上升,密度减小,使得熔盐在罐内形成自然对流,螺旋管结构的布置形式使得罐内熔盐流场呈现三处旋涡;当螺旋管布置位置接近罐内底部时,由于底部熔盐密度较小,自然对流更为强烈,蓄热完成时间相对于布置在罐内中上部时可缩短34.1%;螺旋管内径的增大使得换热面积增加,加快了熔盐升温速率;螺旋管间距的增大会使熔盐加热范围变大,小幅度缩短蓄热完成时间;下进上出的进汽方式由于进口位置更靠近底部,使得罐内熔盐自然对流更强.Abstract: Aimed at the application of heat storage technology in the field of new energy consumption, a molten salt single tank integrating the heat storage and the heat exchange was proposed. The single tank heat storage characteristics and molten salt heat transfer laws during the heat storage process were numerically simulated and analyzed. The effects of spiral tube spacings and inlet/outlet layout positions on the heat storage process were discussed. The results show that, the molten salt temperature increases gradually in the heat storage process, while the molten salt density decreases and the natural convection forms in the tank. The spiral structure of the tube makes 3 vortices be formed in the flow field of the molten salt. With the spiral tube positioned at the bottom of the tank, the heat storage completion time can be shortened by 34.1% due to a stronger natural convection, compared with the cases at the center and the top of the tank. The increase of the spiral tube diameter may enlarge the heat transfer area and speed up the heating rate of the molten salt. With the increase of the spiral tube spacing, the heating range of the molten salt will be larger, and the heat storage completion time will be shortened slightly. The natural convection of the molten salt is stronger in the inlet-down and outlet-up case since the inlet position is closer to the tank bottom.
-
Key words:
- molten salt single tank /
- heat storage completion time /
- molten salt temperature /
- natural convection /
- spiral tube
edited-byedited-by1) 我刊青年编委李勇来稿 -
符号说明 Tv 蒸汽出口温度,℃ Tm 熔盐温度,℃ hm 熔盐侧换热系数,W/(m2 · K) τ 蓄热时间,s 下角标 v 蒸汽 m 熔盐 表 1 三元熔盐物性参数
Table 1. Physical parameters of the ternary molten salt
parameter value upper limit temperature/℃ 535 thermal conductivity/(W/(m·℃)) 0.571 specific heat/(J/(kg·K)) 1 550 dynamic viscosity/(mPa·s) 0.000 131T2-0.177 26T+61.764 melting point/℃ 142 density/(kg/m3) 2 317.5-0.787 8T 表 2 网格及时间步长独立性校核
Table 2. Mesh and time step independence checks
grid number time step /s molten salt temperature /℃ relative error /% 1 153 615 1 67.622 - 1 393 601 1 67.711 0.131 1 850 900 1 67.691 0.029 2 275 841 1 67.701 0.014 1 850 900 10 68.016 - 1 850 900 1 67.691 0.477 1 850 900 0.1 67.681 0.014 -
[1] 黄河, 高佳徐, 任智彬, 等. 内三角管式快速蓄放热单元的肋片拓扑优化[J]. 应用数学和力学, 2022, 43 (11): 1238-1248. doi: 10.21656/1000-0887.420198HUANG He, GAO Jiaxu, REN Zhibin, et al. Topology optimization of fins for rapid heat storage and release in triangular-inside tube units[J]. Applied Mathematics and Mechanics, 2022, 43 (11): 1238-1248. (in Chinese) doi: 10.21656/1000-0887.420198 [2] LIU Y, WANG N, DING Y. Preparation and properties of composite phase change material based on solar heat storage system[J]. Journal of Energy Storage, 2021, 40 : 102805. doi: 10.1016/j.est.2021.102805 [3] 潘涵婷, 许多, 徐洪涛, 等. 空穴效应下泡沫金属复合相变材料热性能数值模拟[J]. 应用数学和力学, 2024, 45 (1): 85-96. doi: 10.21656/1000-0887.440082PAN Hanting, XU Duo, XU Hongtao, et al. Numerical analysis on thermal performances of metal foam composite phase change materials under cavity effects[J]. Applied Mathematics and Mechanics, 2024, 45 (1): 85-96. (in Chinese) doi: 10.21656/1000-0887.440082 [4] XU X, VIGNAROOBAN K, XU B, et al. Prospects and problems of concentrating solar power technologies for power generation in the desert regions[J]. Renewable and Sustainable Energy Reviews, 2016, 53 : 1106-1131. doi: 10.1016/j.rser.2015.09.015 [5] ISLAM M T, HUDA N, ABDULLAH A B, et al. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends[J]. Renewable and Sustainable Energy Reviews, 2018, 91 : 987-1018. doi: 10.1016/j.rser.2018.04.097 [6] PACHECO J E, SHOWALTER S K, KOLB W J. Development of a molten-salt thermocline thermal storage system for parabolic trough plants[J]. Journal of Solar Energy Engineering, 2002, 124 (2): 153-159. [7] ANGELINI G, LUCCHINI A, MANZOLINI G. Comparison of thermocline molten salt storage performances to commercial two-tank configuration[J]. Energy Procedia, 2014, 49 : 694-704. doi: 10.1016/j.egypro.2014.03.075 [8] 张健, 邓泽宏, 肖欣悦, 等. 熔融盐斜温层单罐蓄热的热力性能优化研究[J]. 西北水电, 2021(5): 127-135.ZHANG Jian, DENG Zehong, XIAO Xinyue, et al. Study on thermal performance optimization of molten-salt heat storage with thermocline in single-tank[J]. Northwest Hydropower, 2021(5): 127-135. (in Chinese) [9] LOU W R, XIE B S, AUBRIL J, et al. Optimized flow distributor for stabilized thermal stratification in a single-medium thermocline storage tank: a numerical and experimental study[J]. Energy, 2023, 263 : 125709. [10] VAIVUDH S, RAKWICHIAN W, CHINDARUKSA S. Heat transfer of high thermal energy storage with heat exchanger for solar trough power plant[J]. Energy Conversion and Management, 2008, 49 (11): 3311-3317. doi: 10.1016/j.enconman.2008.04.013 [11] HUANG Z J, ZOU Y K, DING J, et al. Experimental investigation of heat transfer in coiled tube type molten salt steam generator[J]. Applied Thermal Engineering, 2019, 148 : 1131-1138. doi: 10.1016/j.applthermaleng.2018.11.118 [12] 孙晓丽, 鹿院卫, 崔锡民, 等. 单罐熔融盐释热传热规律实验研究[J]. 太阳能学报, 2018, 39 (1): 8-13.SUN Xiaoli, LU Yuanwei, CUI Ximin, et al. Discharge experiments of molten salt in single storage tank[J]. Acta Energiae Solaris Sinica, 2018, 39 (1): 8-13. (in Chinese) [13] 孙晓丽. 单罐熔融盐蓄热与释热传热规律研究[D]. 北京: 北京工业大学, 2016.SUN Xiaoli. Study on charging and discharging process of molten salt in single thermal energy storage tank[D]. Beijing: Beijing University of Technology, 2016. (in Chinese) [14] 崔锡民, 鹿院卫, 吴玉庭, 等. 温度分层对小型熔盐单罐释热过程影响[J]. 化工学报, 2018, 69 (6): 2410-2416.CUI Ximin, LU Yuanwei, WU Yuting, et al. Influence of thermal stratification on discharging process of molten salt in small single thermal storage tank[J]. CIESC Journal, 2018, 69 (6): 2410-2416. (in Chinese) [15] 崔锡民. 小型熔盐单罐供暖系统的设计与性能研究[D]. 北京: 北京工业大学, 2018.CUI Ximin. Heating system design and its performance research of small single energy storage tank with molten salts[D]. Beijing: Beijing University of Technology, 2018. (in Chinese) [16] 李光华. 小容量熔融盐蓄热装置结构设计与性能优化的研究[D]. 南京: 东南大学, 2019.LI Guanghua. Design and research on performance optimization of small capacity molten salt heat storage device[D]. Nanjing: Southeast University, 2019. (in Chinese) [17] ZHANG J J, LIU Y, GUO Y M, et al. Numerical study on flow and noise characteristics of high-temperature and high-pressure steam ejector[J]. Energies, 2023, 16 (10): 4158. -