留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔盐单罐蓄热过程流动及换热特性数值研究

梁五洲 武宾 刘众元 李勇 张嘉杰 马素霞

梁五洲, 武宾, 刘众元, 李勇, 张嘉杰, 马素霞. 熔盐单罐蓄热过程流动及换热特性数值研究[J]. 应用数学和力学, 2025, 46(3): 340-352. doi: 10.21656/1000-0887.450186
引用本文: 梁五洲, 武宾, 刘众元, 李勇, 张嘉杰, 马素霞. 熔盐单罐蓄热过程流动及换热特性数值研究[J]. 应用数学和力学, 2025, 46(3): 340-352. doi: 10.21656/1000-0887.450186
LIANG Wuzhou, WU Bin, LIU Zhongyuan, LI Yong, ZHANG Jiajie, MA Suxia. Numerical Study on Flow and Heat Transfer Characteristics of the Molten Salt Single Tank Heat Storage Process[J]. Applied Mathematics and Mechanics, 2025, 46(3): 340-352. doi: 10.21656/1000-0887.450186
Citation: LIANG Wuzhou, WU Bin, LIU Zhongyuan, LI Yong, ZHANG Jiajie, MA Suxia. Numerical Study on Flow and Heat Transfer Characteristics of the Molten Salt Single Tank Heat Storage Process[J]. Applied Mathematics and Mechanics, 2025, 46(3): 340-352. doi: 10.21656/1000-0887.450186

熔盐单罐蓄热过程流动及换热特性数值研究

doi: 10.21656/1000-0887.450186
我刊青年编委李勇来稿
基金项目: 

国网山西省电力公司科技项目 520530230026

详细信息
    作者简介:

    梁五洲(1974—),男,正高级工程师(E-mail: liangwuzhoudky@126.com)

    通讯作者:

    张嘉杰(1988—),男,教授,博士(通讯作者. E-mail: zhangjiajie@tyut.edu.cn)

  • 中图分类号: TK02

Numerical Study on Flow and Heat Transfer Characteristics of the Molten Salt Single Tank Heat Storage Process

Contributed by LI Yong, M.AMM Youth Editorial Board
  • 摘要: 针对储热技术在新能源消纳领域的应用背景,该文设计了一种储换热一体式熔盐单罐,通过数值模拟研究了单罐蓄热特性及熔盐在蓄热过程中的传热规律,探讨了螺旋管间距、布置位置等对蓄热过程的影响规律. 研究结果表明:熔盐温度在蓄热过程中逐渐上升,密度减小,使得熔盐在罐内形成自然对流,螺旋管结构的布置形式使得罐内熔盐流场呈现三处旋涡;当螺旋管布置位置接近罐内底部时,由于底部熔盐密度较小,自然对流更为强烈,蓄热完成时间相对于布置在罐内中上部时可缩短34.1%;螺旋管内径的增大使得换热面积增加,加快了熔盐升温速率;螺旋管间距的增大会使熔盐加热范围变大,小幅度缩短蓄热完成时间;下进上出的进汽方式由于进口位置更靠近底部,使得罐内熔盐自然对流更强.
    1)  我刊青年编委李勇来稿
  • 图  1  熔盐单罐原理示意图

    Figure  1.  Schematic diagram of the single tank principle for molten salt

    图  2  物理尺寸示意图

    Figure  2.  Physical dimensions

    图  3  网格划分

    Figure  3.  Meshing of the tank

    图  4  当前模拟结果与文献[15]中出口水温的对比

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Comparison between current simulation results and water outlet temperatures in ref. [15]

    图  5  熔盐平均温度、蒸汽出口温度和熔盐侧对流换热系数随蓄热时间变化曲线

    Figure  5.  Variation curves of the average temperature of molten salt, the steam outlet temperature and the convective heat transfer coefficient on the molten salt side with the heat storage time

    图  6  熔盐罐中心垂直截面(y=0)在不同时间点的流场和温度场分布

    Figure  6.  Flow field and temperature distributions of the vertical cross section (y=0) at different moments in the center of the molten salt tank

    图  7  不同布置位置时,熔盐平均温度、熔盐侧对流换热系数随蓄热时间变化曲线

    Figure  7.  Average temperatures of the molten salt and convective heat transfer coefficients on the molten salt side with the heat storage time in different positions

    图  8  不同布置位置时,中心垂直截面(y=0)处熔盐流场对比(τ=12 000 s)

    Figure  8.  Comparison of molten salt flow fields at the center vertical section (y=0) at different positions(τ=12 000 s)

    图  9  不同管内径时,熔盐平均温度、熔盐侧对流换热系数随蓄热时间变化曲线

    Figure  9.  Average temperatures of the molten salt and convective heat transfer coefficients on the molten salt side varying with the heat storage time under different inner diameters of pipes

    图  10  不同管内径时,中心垂直截面(y=0)处熔盐流场对比(τ=12 000 s)

    Figure  10.  Comparison of molten salt flow fields at the center vertical section (y=0) under different inner diameters of pipes(τ=12 000 s)

    图  11  不同管间距时,熔盐平均温度、熔盐侧对流换热系数随蓄热时间变化曲线

    Figure  11.  Average temperatures of the molten salt and convective heat transfer coefficients on the molten salt side with respect to the heat storage time with different pipe spacings

    图  12  不同管间距下,中心垂直截面(y=0)处熔盐流场对比(τ=12 000 s)

    Figure  12.  Comparison of molten salt flow fields at the center vertical section (y=0) under different pipe spacings (τ=12 000 s)

    图  13  下进上出示意图

    Figure  13.  The inlet-down and outlet-up layout

    图  14  不同进汽方式时,熔盐平均温度、熔盐侧对流换热系数随蓄热时间的变化曲线

    Figure  14.  Average temperatures of the molten salt and convective heat transfer coefficients on the molten salt side varying with the heat storage time under different steam inlet layouts

    图  15  不同进汽方式时,中心垂直截面(y=0)处熔盐流场对比(τ=12 000 s)

    Figure  15.  Comparison of molten salt flow fields at the center vertical section (y=0) under different steam inlet layouts (τ=12 000 s)

    符号说明
    Tv 蒸汽出口温度,℃ Tm 熔盐温度,℃
    hm 熔盐侧换热系数,W/(m2 · K) τ 蓄热时间,s
    下角标
    v 蒸汽 m 熔盐
    下载: 导出CSV

    表  1  三元熔盐物性参数

    Table  1.   Physical parameters of the ternary molten salt

    parameter value
    upper limit temperature/℃ 535
    thermal conductivity/(W/(m·℃)) 0.571
    specific heat/(J/(kg·K)) 1 550
    dynamic viscosity/(mPa·s) 0.000 131T2-0.177 26T+61.764
    melting point/℃ 142
    density/(kg/m3) 2 317.5-0.787 8T
    下载: 导出CSV

    表  2  网格及时间步长独立性校核

    Table  2.   Mesh and time step independence checks

    grid number time step /s molten salt temperature /℃ relative error /%
    1 153 615 1 67.622 -
    1 393 601 1 67.711 0.131
    1 850 900 1 67.691 0.029
    2 275 841 1 67.701 0.014
    1 850 900 10 68.016 -
    1 850 900 1 67.691 0.477
    1 850 900 0.1 67.681 0.014
    下载: 导出CSV
  • [1] 黄河, 高佳徐, 任智彬, 等. 内三角管式快速蓄放热单元的肋片拓扑优化[J]. 应用数学和力学, 2022, 43 (11): 1238-1248. doi: 10.21656/1000-0887.420198

    HUANG He, GAO Jiaxu, REN Zhibin, et al. Topology optimization of fins for rapid heat storage and release in triangular-inside tube units[J]. Applied Mathematics and Mechanics, 2022, 43 (11): 1238-1248. (in Chinese) doi: 10.21656/1000-0887.420198
    [2] LIU Y, WANG N, DING Y. Preparation and properties of composite phase change material based on solar heat storage system[J]. Journal of Energy Storage, 2021, 40 : 102805. doi: 10.1016/j.est.2021.102805
    [3] 潘涵婷, 许多, 徐洪涛, 等. 空穴效应下泡沫金属复合相变材料热性能数值模拟[J]. 应用数学和力学, 2024, 45 (1): 85-96. doi: 10.21656/1000-0887.440082

    PAN Hanting, XU Duo, XU Hongtao, et al. Numerical analysis on thermal performances of metal foam composite phase change materials under cavity effects[J]. Applied Mathematics and Mechanics, 2024, 45 (1): 85-96. (in Chinese) doi: 10.21656/1000-0887.440082
    [4] XU X, VIGNAROOBAN K, XU B, et al. Prospects and problems of concentrating solar power technologies for power generation in the desert regions[J]. Renewable and Sustainable Energy Reviews, 2016, 53 : 1106-1131. doi: 10.1016/j.rser.2015.09.015
    [5] ISLAM M T, HUDA N, ABDULLAH A B, et al. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends[J]. Renewable and Sustainable Energy Reviews, 2018, 91 : 987-1018. doi: 10.1016/j.rser.2018.04.097
    [6] PACHECO J E, SHOWALTER S K, KOLB W J. Development of a molten-salt thermocline thermal storage system for parabolic trough plants[J]. Journal of Solar Energy Engineering, 2002, 124 (2): 153-159.
    [7] ANGELINI G, LUCCHINI A, MANZOLINI G. Comparison of thermocline molten salt storage performances to commercial two-tank configuration[J]. Energy Procedia, 2014, 49 : 694-704. doi: 10.1016/j.egypro.2014.03.075
    [8] 张健, 邓泽宏, 肖欣悦, 等. 熔融盐斜温层单罐蓄热的热力性能优化研究[J]. 西北水电, 2021(5): 127-135.

    ZHANG Jian, DENG Zehong, XIAO Xinyue, et al. Study on thermal performance optimization of molten-salt heat storage with thermocline in single-tank[J]. Northwest Hydropower, 2021(5): 127-135. (in Chinese)
    [9] LOU W R, XIE B S, AUBRIL J, et al. Optimized flow distributor for stabilized thermal stratification in a single-medium thermocline storage tank: a numerical and experimental study[J]. Energy, 2023, 263 : 125709.
    [10] VAIVUDH S, RAKWICHIAN W, CHINDARUKSA S. Heat transfer of high thermal energy storage with heat exchanger for solar trough power plant[J]. Energy Conversion and Management, 2008, 49 (11): 3311-3317. doi: 10.1016/j.enconman.2008.04.013
    [11] HUANG Z J, ZOU Y K, DING J, et al. Experimental investigation of heat transfer in coiled tube type molten salt steam generator[J]. Applied Thermal Engineering, 2019, 148 : 1131-1138. doi: 10.1016/j.applthermaleng.2018.11.118
    [12] 孙晓丽, 鹿院卫, 崔锡民, 等. 单罐熔融盐释热传热规律实验研究[J]. 太阳能学报, 2018, 39 (1): 8-13.

    SUN Xiaoli, LU Yuanwei, CUI Ximin, et al. Discharge experiments of molten salt in single storage tank[J]. Acta Energiae Solaris Sinica, 2018, 39 (1): 8-13. (in Chinese)
    [13] 孙晓丽. 单罐熔融盐蓄热与释热传热规律研究[D]. 北京: 北京工业大学, 2016.

    SUN Xiaoli. Study on charging and discharging process of molten salt in single thermal energy storage tank[D]. Beijing: Beijing University of Technology, 2016. (in Chinese)
    [14] 崔锡民, 鹿院卫, 吴玉庭, 等. 温度分层对小型熔盐单罐释热过程影响[J]. 化工学报, 2018, 69 (6): 2410-2416.

    CUI Ximin, LU Yuanwei, WU Yuting, et al. Influence of thermal stratification on discharging process of molten salt in small single thermal storage tank[J]. CIESC Journal, 2018, 69 (6): 2410-2416. (in Chinese)
    [15] 崔锡民. 小型熔盐单罐供暖系统的设计与性能研究[D]. 北京: 北京工业大学, 2018.

    CUI Ximin. Heating system design and its performance research of small single energy storage tank with molten salts[D]. Beijing: Beijing University of Technology, 2018. (in Chinese)
    [16] 李光华. 小容量熔融盐蓄热装置结构设计与性能优化的研究[D]. 南京: 东南大学, 2019.

    LI Guanghua. Design and research on performance optimization of small capacity molten salt heat storage device[D]. Nanjing: Southeast University, 2019. (in Chinese)
    [17] ZHANG J J, LIU Y, GUO Y M, et al. Numerical study on flow and noise characteristics of high-temperature and high-pressure steam ejector[J]. Energies, 2023, 16 (10): 4158.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  34
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-09-27
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回