留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高压下钙钛矿材料铁电峰值行为研究

管豪毅 周志宏 李亚兰 梁英 田晓宝

管豪毅, 周志宏, 李亚兰, 梁英, 田晓宝. 超高压下钙钛矿材料铁电峰值行为研究[J]. 应用数学和力学, 2024, 45(10): 1313-1319. doi: 10.21656/1000-0887.450192
引用本文: 管豪毅, 周志宏, 李亚兰, 梁英, 田晓宝. 超高压下钙钛矿材料铁电峰值行为研究[J]. 应用数学和力学, 2024, 45(10): 1313-1319. doi: 10.21656/1000-0887.450192
GUAN Haoyi, ZHOU Zhihong, LI Yalan, LIANG Ying, TIAN Xiaobao. Ferroelectric Peak Behaviors of Perovskite Materials Under Ultra-High Pressure[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1313-1319. doi: 10.21656/1000-0887.450192
Citation: GUAN Haoyi, ZHOU Zhihong, LI Yalan, LIANG Ying, TIAN Xiaobao. Ferroelectric Peak Behaviors of Perovskite Materials Under Ultra-High Pressure[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1313-1319. doi: 10.21656/1000-0887.450192

超高压下钙钛矿材料铁电峰值行为研究

doi: 10.21656/1000-0887.450192
基金项目: 

国家自然科学基金(12372154);国家重点研发计划(J2019-III-0010-0054);四川省科技计划(2024NSFSC0430)

详细信息
    作者简介:

    管豪毅(1995—),男,硕士(E-mail: 1336799042@qq.com);田晓宝(1985—),男,教授,博士,博士生导师(通讯作者. E-mail: xbtian@scu.edu.cn).

    通讯作者:

    田晓宝(1985—),男,教授,博士,博士生导师(通讯作者. E-mail: xbtian@scu.edu.cn).

  • 中图分类号: O32|O521

Ferroelectric Peak Behaviors of Perovskite Materials Under Ultra-High Pressure

Funds: 

The National Science Foundation of China(12372154)

  • 摘要: 压力能够显著影响钙钛矿铁电材料的晶体结构和功能特性,且对相变温度的影响相对较小,是能比较有效地改善材料的介电和铁电性质的手段.该文利用基于第一性原理的分子动力学方法,探究了钛酸钡(BTO)单晶在常压至150 GPa静水压力区间的铁电性演变规律.结果表明,BTO单晶的铁电性随着压力的增加呈现出非单调的变化趋势,表现为先减弱、后增强,最后完全消失,并在42 GPa处出现峰值现象,其原因是压力导致的原子间距减小影响了长程Coulomb力与短程电子斥力的平衡.研究揭示的BTO单晶在超高静水压力环境下的铁电性变化规律,为未来钙钛矿材料在器件领域中的应用提供了理论基础, 并为实验领域研究BTO铁电性的超高压行为提供了理论指导.
  • SAMARA G A. Pressure and temperature dependences of the dielectric properties of the perovskites BaTiO3 and SrTiO3[J].Physical Review,1966,151(2): 378.
    [2]肖长江, 窦志强. 钙钛矿铁电体在超高压下的相变研究进展[J]. 人工晶体学报, 2018,47(1): 194-199.(XIAO Changjiang, DOU Zhiqiang. Research progress of phase transition of perovskite ferroelectric under super-high pressure[J].Journal of Synthetic Crystals,2018,47(1): 194-199.(in Chinese))
    [3]ISHIDATE T, ABE S, TAKAHASHI H. Phase diagram of BaTiO3[J].Physical Review Letter,1997,78(12): 2397-2400.
    [4]VENKATESWARAN U D, NAIK V M, NAIK R. High-pressure Raman studies of polycrystalline BaTiO3[J].Physical Review B,1998,58(21): 14256-14260.
    [5]KORNEV I A, BELLAICHE L, BOUVIER P, et al. Ferroelectricity of perovskites under pressure[J].Physical Review Letters,2005,95(19): 196804.
    [6]DUAN Y, TANG G, CHEN C, et al. First-principles investigations of ferroelectricity and piezoelectricity in BaTiO3/PbTiO3superlattices[J].Physical Review B,2012,85(5): 054108.
    [7]黄艳萍, 黄晓丽, 崔田. 原位高压测试技术在高压结构及性质研究中的应用[J]. 物理, 2019,48(10): 650-661.(HUANG Yanping, HUANG Xiaoli, CUI Tian. Techniques for in-situ measurement of crystal structure and properties under high pressure[J].Physics,2019,48(10): 650-661.(in Chinese))
    [8]周晓玲, 王潘. 高压力学方法及研究进展[J]. 高压物理学报, 2023,37(5): 3-10.(ZHOU Xiaoling, WANG Pan. Methods and research progress in high pressure mechanics[J].Chinese Journal of High Pressure Physics,2023,37(5): 3-10.(in Chinese))
    [9]ARAB F, KANOUNI F, SERHANE R, et al. Electromechanical sensitivity of ZnO thin films at high-pressure regime for SAW strain sensor applications[J].Materials Today Communications,2024,38: 107719.
    [10]GAO J, XU Z, ZHANG C, et al. Hydrostatic pressure dependence of dielectric, elastic, and piezoelectric properties of Pb(Mg1/3Nb2/3)O3—0.33PbTiO3 ceramic[J].Journal of the American Ceramic Society,2011,94(9): 2946-2950.
    [11]PENG P, NIE H, GUO W, et al. Pressure-induced ferroelectric-relaxor phase transition in (Bi0.5Na0.5)TiO3-based ceramics[J].Journal of the American Ceramic Society,2019,102(5): 2569-2577.
    [12]XIE M, NIE H, WANG G, et al. Enhanced pressure-driven force-electric conversion effect for (Pb, La)(Zr, Ti)O3 ferroelectric ceramics[J].Journal of the American Ceramic Society,2022,105(2): 1210-1219.
    [13]TANG M, HU L, WU Y, et al. Electromechanical properties of [001]-textured Mn-PMN-PZT ceramics under hydrostatic pressure[J].Journal of the American Ceramic Society,2024,107(2): 1042-1051.
    [14]CHEN Y, WANG H, LOU X, et al. Vortex domain structures induced by strain gradient reduce ferroelectric brittleness[J].Acta Mechanica Sinica,2023,39(5): 422428.
    [15]SEPLIARSKY M, ASTHAGIRI A, PHILLPOT S R, et al. Atomic-level simulation of ferroelectricity in oxide materials[J].Current Opinion in Solid State and Materials Science,2005,9(3): 107-113.
    [16]TINTE S, STACHIOTTI M G, SEPLIARSKY M, et al. Atomistic modelling of BaTiO3 based on first-principles calculations[J].Journal of Physics:Condensed Matter,1999,11(48): 9679-9690.
    [17]SANG Y, LIU B, FANG D. The size and strain effects on the electric-field-induced domain evolution and hysteresis loop in ferroelectric BaTiO3 nanofilms[J].Computational Materials Science,2008,44(2): 404-410.
    [18]田晓宝. 铁电体极化畴与力电耦合性能的分子动力学模拟[D]. 武汉: 华中科技大学, 2013.(TIAN Xiaobao. Atomistic simulation of domain structures and electromechanical coupling responses in ferroelectric[D]. Wuhan: Huazhong University of Science and Technology, 2013. (in Chinese))
    [19]关嘉怡, 张刚华, 曾涛, 等. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022,36(12): 5-12.(GUAN Jiayi, ZHANG Ganghua, ZENG Tao, et al. Research progress in high pressure on tuning the structural and physical properties of ferroelectric materials[J].Materials Reports,2022,36(12): 5-12.(in Chinese))
    [20]肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019,33(7): 1163-1168.(XIAO Changjiang. Ferroelectricity reentrance of perovskite ferroelectric under ultra-high pressure: an overview[J].Materials Reports,2019,33(7): 1163-1168.(in Chinese))
  • 加载中
计量
  • 文章访问数:  70
  • HTML全文浏览量:  16
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2024-08-01
  • 网络出版日期:  2024-10-31
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回