留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弯曲矩形微通道内纳米流体的电渗流动及其传热特性

邢靖楠 刘勇波

邢靖楠, 刘勇波. 弯曲矩形微通道内纳米流体的电渗流动及其传热特性[J]. 应用数学和力学, 2025, 46(6): 717-729. doi: 10.21656/1000-0887.450199
引用本文: 邢靖楠, 刘勇波. 弯曲矩形微通道内纳米流体的电渗流动及其传热特性[J]. 应用数学和力学, 2025, 46(6): 717-729. doi: 10.21656/1000-0887.450199
XING Jingnan, LIU Yongbo. Electroosmotic Flow and Heat Transfer Characteristics of Nanofluids in Curved Rectangular Microchannels[J]. Applied Mathematics and Mechanics, 2025, 46(6): 717-729. doi: 10.21656/1000-0887.450199
Citation: XING Jingnan, LIU Yongbo. Electroosmotic Flow and Heat Transfer Characteristics of Nanofluids in Curved Rectangular Microchannels[J]. Applied Mathematics and Mechanics, 2025, 46(6): 717-729. doi: 10.21656/1000-0887.450199

弯曲矩形微通道内纳米流体的电渗流动及其传热特性

doi: 10.21656/1000-0887.450199
基金项目: 

内蒙古自然科学基金(2021BS01008);内蒙古自治区高等学校青年科技人才发展项目 (NJYT24058)

详细信息
    作者简介:

    邢靖楠(1992—),女,讲师,硕士(E-mail: 1139695829@qq.com);刘勇波(1990—),男,副教授,博士,硕士生导师(通讯作者. E-mail: liuyb@mail.imu.edu.cn).

    通讯作者:

    刘勇波(1990—),男,副教授,博士,硕士生导师(通讯作者. E-mail: liuyb@mail.imu.edu.cn).

  • 中图分类号: O357.1

Electroosmotic Flow and Heat Transfer Characteristics of Nanofluids in Curved Rectangular Microchannels

  • 摘要: 弯曲微通道在电渗流及其传热方面展现出显著的优势,包括增大电渗流速度和提高传热效率.同时,纳米流体因其优良的传热性能也受到广泛关注.然而,目前关于弯曲微通道内纳米流体的电渗流及传热机理的研究仍显不足.该研究旨在探讨在低 zeta 势和恒壁面热流密度条件下,弯曲微通道的几何效应对微通道中纳米流体的电渗透流动及换热特性的影响.研究中考虑了蠕变Dean流,由于不存在向心力,速度场保持直线分布.利用Fourier变换方法得到了速度和温度的半解析解,进而推导出了Nusselt数Nu的数学表达式.通过分析速度、温度和Nu随曲率比δ、纳米粒子体积分数φ、特征压力速度和特征电渗速度之比ur等相关物理参数的变化趋势,揭示了这种流动和传热现象的特性.结果表明,Nu随着压力速度的增大而减小,随曲率比的增大而减小,而随着纳米粒子体积分数的增大而增大.该文的结果为微纳米流体器件的设计和应用提供了重要的参考价值,有助于优化器件性能和应用.
  • [2]严浩, 代胡亮, 王琳, 等. 气-液横向流动下悬臂柱体结构涡激振动机理研究[J]. 应用数学和力学, 2022,43(5): 577-585.(YAN Hao, DAI Huliang, WANG Lin, et al. A study on the vortex-induced vibration mechanism of cantilever cylinders under gas-liquid cross flows[J].Applied Mathematics and Mechanics,2022,43(5): 577-585. (in Chinese))
    孙云卿, 吴志强, 章国齐, 等. 海洋立管双模态动力学分岔分析[J]. 应用数学和力学, 2020,41(5): 480-490.

    (SUN Yunqing, WU Zhiqiang, ZHANG Guoqi, et al. Bifurcation analysis of dual-mode dynamics for marine risers[J].Applied Mathematics and Mechanics,2020,41(5): 480-490. (in Chinese))
    [3]陈艳波, 刘志慧, 吴适存, 等. 高速公路绿色能源系统体系架构初探[J]. 新型电力系统, 2024(1): 94-114.(CHEN Yanbo, LIU Zhihui, WU Shicun, et al. Preliminary study on highway green energy system architecture[J].New Type Power Systems,2024(1): 94-114. (in Chinese))
    [4]黄加勉, 蔡学志. 双碳背景下新能源在新型电力系统中的实践运用[J]. 电工技术, 2023(S1): 111-113.(HUANG Jiamian, CAl Xuezhi. Practical application of new energy in new power systems under the dual carbon background[J].Electric Engineering,2023(S1): 111-113.(in Chinese))
    [5]王丽华. “双碳” 背景下煤炭资源地区转型路径研究: 基于一体化绿色能源综合基地构建[J]. 节能与环保, 2023(10): 8-13.(WANG Lihua. Research on the transformation path of coal resource regions under the background of “dual carbon”: based on the construction of an integrated green energy comprehensive base[J].Energy Conservation & Environmental Protection,2023(10): 8-13. (in Chinese))
    [6]岳玉帅. 单约束圆柱海流能发电流致振动数值模拟研究[D]. 镇江: 江苏科技大学, 2019.(YUE Yushuai. Numerical simulation of current-induced vibration of a single confined cylinder generated by ocean current energy[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019. (in Chinese))
    [7]李俊. 涡激振动驱动的三维圆柱水动能俘获及阵列布置优化研究[D]. 昆明: 昆明理工大学, 2023.(LI Jun. Research on three-dimensional cylindrical water kinetic energy capture and array layout optimization driven by vortex induced vibration[D]. Kunming: Kunming University of Science and Technology, 2023. (in Chinese))
    [8]白旭, 乐智斌, 张焱飞. 质量比对圆柱体流致振动能量捕获效率的影响[J]. 太阳能学报, 2018,39(12): 3325-3330.(BAI Xu, LE Zhibin, ZHANG Yanfei. Effect of mass ratio on energy capture efficiency of vibration induced by cylinder flow[J].Acta Energiae Solaris Sinica,2018,39(12): 3325-3330. (in Chinese))
    [9]陈芝贇. 基于被动控制与流致振动不稳定性储能装置效率的参数化研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.(CHEN Zhiyun. Parameterization research on the harnessed energy of nonlinear oscillators with passive controls in fluid induced motion[D]. Harbin: Harbin Engineering University, 2019. (in Chinese))
    [10]及春宁, 孔令臣, 徐晓黎, 等. 附加旋转圆柱涡激振动发电装置能量获取性能研究[J]. 港工技术, 2022,59(6): 38-44.(JI Chunning, KONG Lingchen, XU Xiaoli, et al. Study on energy harvest performance of vortex-induced vibration power generator with additional spinning cylinders[J].Port Engineering Technology,2022,59(6): 38-44. (in Chinese))
    [11]SHAN X, SUI G, TIAN H, et al. Numerical analysis and experiments of an underwater magnetic nonlinear energy harvester based on vortex-induced vibration[J].Energy,2022,241: 122933.
    [12]ZHANG W, LI X, HE Z. Two-degrees of freedom flow-induced vibration of circular cylinder with nonlinear stiffness[J].Ocean Engineering,2023,286: 115506.
    [13]LIU J, BAO B, CHEN J, et al. Marine energy harvesting from tidal currents and offshore winds: a 2-DOF system based on flow-induced vibrations[J].Nano Energy,2023,114: 108664.
    [14]FANG S, DU H, YAN T, et al. Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting[J].Applied Energy,2024,356: 122395.
    [16]HUYNH B H, TJAHJOWIDODO T, ZHONG Z W, et al. Numerical and experimental investigation of nonlinear vortex induced vibration energy converters[J].Journal of Mechanical Science and Technology,2017,31(8): 3715-3726.
    BIBO A, ALHADIDI A H, DAQAQ M F. Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters[J].Journal of Applied Physics,2015,117(4): 045103.
    [17]高鸣源, 李守太, 孙玉华, 等. 多稳态电磁俘能系统的非线性动力学实验研究[J]. 振动工程学报, 2021,34(4): 775-781.(GAO Mingyuan, LI Shoutai, SUN Yuhua, et al. Experimental study of non-linear dynamics of multi-stable electromagnetic energy harvesting system[J].Journal of Vibration Engineering,2021,34(4): 775-781. (in Chinese))
    [18]ZHANG B, SONG B, MAO Z, et al. Hydrokinetic energy harnessing by spring-mounted oscillators in FIM with different cross sections: from triangle to circle[J].Energy,2019,189: 116249.
    [19]FACCHINETTI M L, DE LANGRE E, BIOLLEY F. Vortex shedding modeling using diffusiveVan der Pol oscillators[J].Comptes Rendus Mécanique,2002,330(7): 451-456.
    [20]郑仲钦, 陈伟民. 结构与尾流非线性耦合涡激振动预测模型[J]. 海洋工程, 2012,30(4): 37-41.(ZHENG Zhongqin, CHEN Weimin. Prediction of vortex-induced vibration of cylinder based on the nonlinear coupling of structure and wake oscillator[J].The Ocean Engineering,2012,30(4): 37-41. (in Chinese))
    [21]吴子英, 常宇琛, 赵伟, 等. 三稳态电磁式涡激振动俘能装置发电性能研究[J]. 振动与冲击, 2022,41(13): 26-33.(WU Ziying, CHANG Yuchen, ZHAO Wei, et al. Power generation performance of tri-stable state electromagnetic VIV energy harvester[J].Journal of Vibration and Shock,2022,41(13): 26-33. (in Chinese))
    [22]WANG L, TODARIA P, PANDEY A, et al. An electromagnetic speed bump energy harvester and its interactions with vehicles[J].IEEE/ASME Transactions on Mechatronics,2016,21(4): 1985-1994.
    [23]康庄, 张橙, 付森, 等. 圆柱体涡激振动的高阶非线性振子模型研究[J]. 振动与冲击, 2018,37(18): 48-58.(KANG Zhuang, ZHANG Cheng, FU Sen, et al. Nonlinear oscillator model for the vortex-induced vibration of a cylinder[J].Journal of Vibration and Shock,2018,37(18): 48-58. (in Chinese))
    [24]张静宇. 弹性边界双稳态振子非线性动力学及控制研究[D]. 武汉: 华中科技大学, 2021.(ZHANG Jingyu. Research on nonlinear dynamics and control of a bistable oscillator with elastic boundary[D]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese))
  • 加载中
计量
  • 文章访问数:  8
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-08-31
  • 网络出版日期:  2025-06-30

目录

    /

    返回文章
    返回