留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维准晶双材料界面断裂分析的相场法

官高菲 李彤 聂雪阳 张滢睿 徐新生 孙家斌 周震寰

官高菲, 李彤, 聂雪阳, 张滢睿, 徐新生, 孙家斌, 周震寰. 二维准晶双材料界面断裂分析的相场法[J]. 应用数学和力学, 2024, 45(11): 1440-1454. doi: 10.21656/1000-0887.450203
引用本文: 官高菲, 李彤, 聂雪阳, 张滢睿, 徐新生, 孙家斌, 周震寰. 二维准晶双材料界面断裂分析的相场法[J]. 应用数学和力学, 2024, 45(11): 1440-1454. doi: 10.21656/1000-0887.450203
GUAN Gaofei, LI Tong, NIE Xueyang, ZHANG Yingrui, XU Xinsheng, SUN Jiabin, ZHOU Zhenhuan. A Phase-Field Model for Interfacial Fracture in 2D Quasicrystal Bimaterials[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1440-1454. doi: 10.21656/1000-0887.450203
Citation: GUAN Gaofei, LI Tong, NIE Xueyang, ZHANG Yingrui, XU Xinsheng, SUN Jiabin, ZHOU Zhenhuan. A Phase-Field Model for Interfacial Fracture in 2D Quasicrystal Bimaterials[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1440-1454. doi: 10.21656/1000-0887.450203

二维准晶双材料界面断裂分析的相场法

doi: 10.21656/1000-0887.450203
基金项目: 

辽宁省自然科学基金(面上项目) 2023-MS-118

详细信息
    作者简介:

    官高菲(1998—),女,博士生(E-mail: guangaofei@mail.dlut.edu.cn)

    通讯作者:

    周震寰(1983—),男,教授,博士(通讯作者. E-mail: zhouzh@dlut.edu.cn)

  • 中图分类号: O34

A Phase-Field Model for Interfacial Fracture in 2D Quasicrystal Bimaterials

  • 摘要: 针对二维十次准晶双材料的界面断裂问题,建立了用于预测其裂纹扩展路径的相场分析模型. 首先,引入界面相场将离散界面转化为连续分布界面,并获得了界面相场问题的控制方程和边界条件. 利用有限元方法对控制方程进行离散,并求解获得连续分布的界面相场,从而实现了对界面材料参数的弥散处理,消除了材料参数在界面处的奇异性. 其次,基于Francfort-Marigo变分原理建立了二维准晶双材料的控制方程,并采用交错求解方案求解其相场分布. 在数值算例中,通过与现有文献进行对比,证明了该方法的正确性,并研究了相位子场对裂纹扩展路径的影响,以及多裂纹情况的演化规律.
  • 图  1  二维准晶双材料

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  A 2D quasicrystal bimaterials

    图  2  纤维增强复合材料

    Figure  2.  The fiber-reinforced composite

    图  3  裂纹扩展路径的对比

    Figure  3.  Comparison of crack patterns

    图  4  含单边裂纹的正方形准晶(单位: mm)

    Figure  4.  An edge-cracked square quasicrystal (unit: mm)

    图  5  反力-位移曲线和裂纹断裂路径

    Figure  5.  Reaction force-displacement curves and crack patterns

    图  6  含单边裂纹的正方形准晶的几何尺寸和边界条件(单位: mm)

    Figure  6.  Geometry and boundary conditions of the edge-cracked square quasicrystal (unit: mm)

    图  7  反力-位移曲线和裂纹扩展路径

    Figure  7.  The reaction force-displacement curve and crack patterns

    图  8  三点弯曲问题的几何模型及边界条件(单位: mm)

    Figure  8.  Geometry and boundary conditions for the 3-point bending test (unit: mm)

    图  9  反力-位移曲线和裂纹演化过程

    Figure  9.  The reaction force-displacement curve and the crack evolution

    图  10  含单边裂纹的准晶双材料的几何模型及边界条件(单位: mm)

    Figure  10.  Geometry and boundary conditions of the edge-cracked quasicrystal bimaterials (unit: mm)

    图  11  θ=30°时的反力-位移曲线和裂纹扩展路径

    Figure  11.  Reaction force-displacement curves and crack patterns for θ=30°

    图  12  θ=45°时的反力-位移曲线和裂纹扩展路径

    Figure  12.  Reaction force-displacement curves and crack patterns for θ=45°

    图  13  θ=60°时的反力-位移曲线和裂纹扩展路径

    Figure  13.  Reaction force-displacement curves and crack patterns for θ=60°

    图  14  不同Gi/Gc情况下的反力-位移曲线

    Figure  14.  Reaction force-displacement curves obtained from different Gi/Gc ratios

    图  15  不同Gi/Gc情况下的裂纹扩展路径

    Figure  15.  Crack patterns obtained from different Gi/Gc ratios

    图  16  含双边裂纹的准晶双材料的几何模型及边界条件(单位: mm)

    Figure  16.  Geometry and boundary conditions of the double-notches quasicrystal bimaterials (unit: mm)

    图  17  含双边裂纹的准晶双材料受拉时的反力-位移曲线

    Figure  17.  The reaction force-displacement curve of tension test of the double-notches quasicrystal biomaterials

    图  18  不同加载时刻的裂纹扩展情况

    Figure  18.  Crack patterns at different loading times

    表  1  二维十次准晶材料参数[18, 34]

    Table  1.   Material properties of 2D decagonal quasicrystal[18, 34]

    parameter QC-1 QC-2
    phonon elastic modulus C11/GPa 234.3 200
    phonon elastic modulus C12/GPa 57.34 100
    phonon elastic modulus C66/GPa 88.45 50
    phason elastic modulus K1/GPa 122 50
    phason elastic modulus K2/GPa 24 20
    phonon-phason coupling coefficient R1/GPa -1.1 10
    phonon-phason coupling coefficient R2/GPa 0.1 10
    critical energy release rate Gc/(kN/mm) 5.56×10-7 1.99×10-6
    下载: 导出CSV
  • [1] MACIÁ-BARBER E. Quasicrystals: Fundamentals and Applications[M]. CRC Press, 2020.
    [2] 杨震霆, 王雅静, 聂雪阳, 等. 含切口的压电准晶组合结构界面断裂分析的辛-等几何耦合方法[J]. 应用数学和力学, 2024, 45(2): 144-154. doi: 10.21656/1000-0887.440247

    YANG Zhenting, WANG Yajing, NIE Xueyang, et al. Symplectic isogeometric analysis coupling method for interfacial fracture of piezoelectric quasicrystal composites with notches[J]. Applied Mathematics and Mechanics, 2024, 45(2): 144-154. (in Chinese) doi: 10.21656/1000-0887.440247
    [3] 赵雪芬, 卢绍楠, 马园园, 等. 一维六方准晶非周期平面内中心开口裂纹的平面热弹性问题[J]. 应用数学和力学, 2024, 45(3): 303-317.

    ZHAO Xuefen, LU Shaonan, MA Yuanyuan, et al. The plane thermoelastic problem of a central opening crack in the 1D hexagonal quasicrystal non-periodic plane[J]. Applied Mathematics and Mechanics, 2024, 45(3): 303-317. (in Chinese)
    [4] 张炳彩, 丁生虎, 张来萍. 一维六方准晶双材料中圆孔边共线界面裂纹的反平面问题[J]. 应用数学和力学, 2022, 43(6): 639-647. doi: 10.21656/1000-0887.420202

    ZHANG Bingcai, DING Shenghu, ZHANG Laiping. The anti-plane problem of collinear interface cracks emanating from a circular hole in 1D hexagonal quasicrystal bi-materials[J]. Applied Mathematics and Mechanics, 2022, 43(6): 639-647. (in Chinese) doi: 10.21656/1000-0887.420202
    [5] ZHAO M, DANG H, FAN C, et al. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, part 1: theoretical solution[J]. Engineering Fracture Mechanics, 2017, 179: 59-78. doi: 10.1016/j.engfracmech.2017.04.019
    [6] DANG H, ZHAO M, FAN C, et al. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, part 2: numerical method[J]. Engineering Fracture Mechanics, 2017, 180: 268-281. doi: 10.1016/j.engfracmech.2017.05.042
    [7] FAN C, LV S, DANG H, et al. Fundamental solutions and analysis of the interface crack for two-dimensional decagonal quasicrystal bimaterial via the displacement discontinuity method[J]. Engineering Analysis With Boundary Elements, 2019, 106: 462-472. doi: 10.1016/j.enganabound.2019.05.029
    [8] ZHAO M, FAN C, LU C S, et al. Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1633-1648. doi: 10.1007/s10483-021-2786-5
    [9] ZHAO M, ZHANG X, FAN C, et al. Thermal fracture analysis of a two-dimensional decagonal quasicrystal coating structure with interface cracks[J]. Mechanics of Advanced Materials and Structures, 2023, 30(10): 2001-2016. doi: 10.1080/15376494.2022.2048326
    [10] TREBIN H R, MIKULLA R, STADLER J, et al. Molecular dynamics simulations of crack propagation in quasicrystals[J]. Computer Physics Communications, 1999, 121/122: 536-539. doi: 10.1016/S0010-4655(99)00400-2
    [11] KRDZALIC G, BRUNELLI M, TREBIN H R. Temperature dependence of dislocation motion and crack propagation in a two-dimensional binary model quasicrystal[J/OL]. MRS Online Proceedings Library, 2001, 643(1): 71[2024-08-16]. https://link.springer.com/article/10.1557/PROC-643-K7.1.
    [12] RUDHART C, TREBIN H R, GUMBSCH P. Crack propagation in perfectly ordered and random tiling quasicrystals[J]. Journal of Non-Crystalline Solids, 2004, 334/335: 453-456. doi: 10.1016/j.jnoncrysol.2003.12.039
    [13] RÖSCH F, RUDHART C, ROTH J, et al. Dynamic fracture of icosahedral model quasicrystals: a molecular dynamics study[J]. Physical Review B, 2005, 72: 014128. doi: 10.1103/PhysRevB.72.014128
    [14] JUNG D Y, STEURER W. Mechanical properties of clusters in quasicrystal approximants: the example of the 1/1 Al-Cu-Fe approximant[J]. Physical Review B, 2011, 84(5): 054116. doi: 10.1103/PhysRevB.84.054116
    [15] 吴祥法, 范天佑, 安冬梅. 用路径守恒积分计算平面准晶裂纹扩展的能量释放率[J]. 计算力学学报, 2000, 17(1): 34-42.

    WU Xiangfa, FAN Tianyou, AN Dongmei. Energy release rate of plane quasicrystals with crack determined by path-independent E-integral[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 34-42. (in Chinese)
    [16] ZHU A Y, FAN T Y. Dynamic crack propagation in decagonal Al-Ni-Co quasicrystal[J]. Journal of Physics: Condensed Matter, 2008, 20(29): 295217. doi: 10.1088/0953-8984/20/29/295217
    [17] TUPHOLME G E. An antiplane shear crack moving in one-dimensional hexagonal quasicrystals[J]. International Journal of Solids and Structures, 2015, 71: 255-261. doi: 10.1016/j.ijsolstr.2015.06.027
    [18] LI T, YANG Z T, XU C H, et al. A phase field approach to two-dimensional quasicrystals with mixed mode cracks[J]. Materials, 2023, 16(10): 3628. doi: 10.3390/ma16103628
    [19] ZHANG Z G, ZHANG B W, LI X, et al. A closed-form solution to the mechanism of interface crack formation with one contact area in decagonal quasicrystal bi-materials[J]. Crystals, 2024, 14(4): 316. doi: 10.3390/cryst14040316
    [20] ZHENG R F, LIU H N, LI P D, et al. Elliptic crack problem under shear mode in one-dimensional hexagonal quasicrystals with crack surface parallel to the quasiperiodic axis[J]. International Journal of Solids and Structures, 2024, 288: 112601. doi: 10.1016/j.ijsolstr.2023.112601
    [21] 苏玉昆, 马涛, 赵晓鑫, 等. 基于有限元技术的疲劳裂纹扩展方法研究进展[J]. 力学进展, 2024, 54(2): 308-343.

    SU Yukun, MA Tao, ZHAO Xiaoxin, et al. Research progress of fatigue crack propagation method based on finite element technology[J]. Advances in Mechanics, 2024, 54(2): 308-343. (in Chinese)
    [22] 赵高乐, 齐红宇, 李少林, 等. 燃气涡轮发动机关键部件疲劳小裂纹研究进展[J]. 力学进展, 2023, 53(4): 819-865.

    ZHAO Gaole, QI Hongyu, LI Shaolin, et al. Review of fatigue small cracks in key components of gas turbine engines[J]. Advances in Mechanics, 2023, 53(4): 819-865. (in Chinese)
    [23] 裘沙沙, 刘星泽, 宁文杰, 等. 断裂相场模型的三维自适应有限元方法[J]. 应用数学和力学, 2024, 45(4): 391-399.

    QIU Shasha, LIU Xingze, NING Wenjie, et al. A three-dimensional adaptive finite element method for phase-field models of fracture[J]. Applied Mathematics and Mechanics, 2024, 45(4): 391-399. (in Chinese)
    [24] SUN T Y, GUO J H, PAN E. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium[J]. Applied Mathematics and Mechanics, 2021, 42(8): 1077-1094. doi: 10.1007/s10483-021-2743-6
    [25] ZHANG M, GUO J H, LI Y S. Bending and vibration of two-dimensional decagonal quasicrystal nanoplatesvia modified couple-stress theory[J]. Applied Mathematics and Mechanics, 2022, 43(3): 371-388. doi: 10.1007/s10483-022-2818-6
    [26] 陈韬, 郭俊宏, 田园. 一维六方准晶层合简支梁自由振动与屈曲的精确解[J]. 固体力学学报, 2023, 44(1): 109-119.

    CHEN Tao, GUO Junhong, TIAN Yuan. Exact solution of free vibration and buckling of one-dimensional hexagonal simply-supported and layered quasicrystal beams[J]. Chinese Journal of Solid Mechanics, 2023, 44(1): 109-119. (in Chinese)
    [27] 原庆丹, 郭俊宏. 一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究[J]. 应用数学和力学, 2024, 45(2): 208-219. doi: 10.21656/1000-0887.440260

    YUAN Qingdan, GUO Junhong. Nonlocal vibration, buckling and bending of 1D layered quasicrystal nanobeams[J]. Applied Mathematics and Mechanics, 2024, 45(2): 208-219. (in Chinese) doi: 10.21656/1000-0887.440260
    [28] MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45/48): 2765-2778.
    [29] FAN T. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Berlin: Springer, 2011.
    [30] YUAN J H, WANG L, CHEN C P. Interfacial fracture analysis for heterogeneous materials based on phase field model[J]. Computational Materials Science, 2023, 220: 112066. doi: 10.1016/j.commatsci.2023.112066
    [31] FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319-1342. doi: 10.1016/S0022-5096(98)00034-9
    [32] MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311. doi: 10.1002/nme.2861
    [33] MOLNÁR G, GRAVOUIL A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[J]. Finite Elements in Analysis and Design, 2017, 130: 27-38. doi: 10.1016/j.finel.2017.03.002
    [34] 袁彦鹏. 准晶材料平面断裂问题分析[D]. 郑州: 郑州大学, 2018.

    YUAN Yanpeng. Analysis of plane fracture problem of quasicrystal[D]. Zhenzhou: Zhenzhou University, 2018. (in Chinese)
    [35] NGUYEN V P, NGUYEN G D, NGUYEN C T, et al. Modelling complex cracks with finite elements: a kinematically enriched constitutive model[J]. International Journal of Fracture, 2017, 203(1): 21-39.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  48
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 修回日期:  2024-08-16
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回