留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

头朝向细胞三维空间活动模式的神经动力学建模

许霜 王毅泓 徐旭颖 潘晓川 王如彬

许霜, 王毅泓, 徐旭颖, 潘晓川, 王如彬. 头朝向细胞三维空间活动模式的神经动力学建模[J]. 应用数学和力学, 2025, 46(7): 836-854. doi: 10.21656/1000-0887.450234
引用本文: 许霜, 王毅泓, 徐旭颖, 潘晓川, 王如彬. 头朝向细胞三维空间活动模式的神经动力学建模[J]. 应用数学和力学, 2025, 46(7): 836-854. doi: 10.21656/1000-0887.450234
XU Shuang, WANG Yihong, XU Xuying, PAN Xiaochuan, WANG Rubin. Neurodynamical Modeling of 3D Spatial Activity Patterns of Head-Direction Cells[J]. Applied Mathematics and Mechanics, 2025, 46(7): 836-854. doi: 10.21656/1000-0887.450234
Citation: XU Shuang, WANG Yihong, XU Xuying, PAN Xiaochuan, WANG Rubin. Neurodynamical Modeling of 3D Spatial Activity Patterns of Head-Direction Cells[J]. Applied Mathematics and Mechanics, 2025, 46(7): 836-854. doi: 10.21656/1000-0887.450234

头朝向细胞三维空间活动模式的神经动力学建模

doi: 10.21656/1000-0887.450234
基金项目: 

国家自然科学基金 12172132

国家自然科学基金 12272136

国家自然科学基金 12472054

详细信息
    作者简介:

    许霜(2000—),女,硕士生

    通讯作者:

    王毅泓(1989—),男,副教授,博士,博士生导师(通讯作者. E-mail: wangyihong@ecust.edu.cn)

  • 中图分类号: O241

Neurodynamical Modeling of 3D Spatial Activity Patterns of Head-Direction Cells

  • 摘要: 哺乳动物的内嗅皮层等多个脑区中存在头朝向细胞(head-direction cells,HD cells),对特定的头部朝向进行选择性响应,构成了大脑内部的指南针系统.该系统可以以自组织的方式更新内部方向表征,也可以接收外部环境信息输入,对方向编码进行校准.目前,大多数头朝向细胞的计算模型只考虑了水平面上的头部方向编码.而实验表明,哺乳动物(例如蝙蝠)脑内存在同时编码水平方位角和竖直俯仰角的神经元,但目前还缺乏对其神经机制的计算建模研究.对此,本研究构造了一个能够同时编码方位角和俯仰角等三维方向特征的连续吸引子网络模型,不仅在单神经元水平上实现了三维头朝向细胞特定的方向偏好编码,而且在群体水平上实现了对三维空间中头部方向变化的准确追踪.模型使用的环面拓扑连接结构,相对于球面拓扑能更合理地解释蝙蝠记录的神经元对方位角的调谐数据.本研究通过神经动力学模型重现了电生理实验记录到的三维头朝向编码的现象,并对头朝向细胞三维空间的活动模式给出了动力学角度的机理解释.
  • 图  1  HD细胞的发放特性和三维空间中的Euler角

    Figure  1.  HD cells' firing properties and Euler angles in 3D space

    图  2  模型框架和结构

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The model framework and structures

    图  3  蝙蝠头部方向变化驱使神经元表格上活动包一致滑动

    Figure  3.  The bat head direction changes driving the activity bump to slide consistently on the neural sheet

    图  4  初始化后,神经元表格上形成稳定的单个活动包

    Figure  4.  The stable single active package formed on the neural sheet after initialization

    图  5  初始化后,HD细胞群体活动分析

    Figure  5.  Analysis of HD cells' population activities after initialization

    图  6  在二维子空间中,HD细胞的群体动态追踪方位角变化

    Figure  6.  HD cells' population dynamics tracking azimuth changes in a 2D subspace

    图  7  在二维子空间中,HD细胞的群体动态追踪俯仰角变化

    Figure  7.  HD cells' population dynamics tracking pitch changes in a 2D subspace

    图  8  HD细胞的群体动态可以准确追踪二维子空间头部方向变化

    Figure  8.  HD cells' population dynamics accurately tracking head direction changes in 2D subspaces

    图  9  HD细胞的群体动态追踪三维空间中方位角×俯仰角变化

    Figure  9.  HD cells' population dynamics tracking azimuth×pitch changes in the 3D space

    图  10  HD细胞的群体动态可以准确追踪三维空间头部方向变化

    Figure  10.  HD cells' population dynamics accurately tracking head direction changes in the 3D space

    图  11  HD细胞的调谐曲面

    Figure  11.  HD cells' tuning surfaces

    图  12  HD细胞偏好方向的估计和估算误差

    Figure  12.  Estimations and errors of HD cells' preferred directions

    图  13  环面拓扑可以合理解释HD细胞的方位角调谐

    Figure  13.  The torus topology reasonably explaining azimuth tuning of HD cells

  • [1] TAUBE J S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats[J]. The Journal of Neuroscience, 1995, 15(1): 70-86.
    [2] TAUBE J S, MULLER R U, RANCK J B. Head-direction cells recorded from the postsubiculum in freely moving rats, Ⅱ: effects of environmental manipulations[J]. The Journal of Neuroscience, 1990, 10(2): 436-447.
    [3] TAUBE J S, MULLER R U, RANCK J B. Head-direction cells recorded from the postsubiculum in freely moving rats, Ⅰ: description and quantitative analysis[J]. The Journal of Neuroscience, 1990, 10(2): 420-435.
    [4] TAUBE J S. The head direction signal: origins and sensory-motor integration[J]. Annual Review of Neuroscience, 2007, 30: 181-207.
    [5] BUTLER W N, SMITH K S, VAN DER MEER M A A, et al. The head-direction signal plays a functional role as a neural compass during navigation[J]. Current Biology, 2017, 27(9): 1259-1267.
    [6] MCNAUGHTON B L, CHEN L L, MARKUS E J. "Dead reckoning", landmark learning, and the sense of direction: a neurophysiological and computational hypothesis[J]. Journal of Cognitive Neuroscience, 1991, 3(2): 190-202.
    [7] WU L Q, DICKMAN J D. Neural correlates of a magnetic sense[J]. Science, 2012, 336(6084): 1054-1057.
    [8] ANGELAKI D E, LAURENS J. The head direction cell network: attractor dynamics, integration within the navigation system, and three-dimensional properties[J]. Current Opinion in Neurobiology, 2020, 60: 136-144.
    [9] KNIERIM J J, ZHANG K. Attractor dynamics of spatially correlated neural activity in the limbic system[J]. Annual Review of Neuroscience, 2012, 35: 267-285.
    [10] REDISH A D, ELGA A N, TOURETZKY D S. A coupled attractor model of the rodent head direction system[J]. Network: Computation in Neural Systems, 1996, 7(4): 671-685.
    [11] SKAGGS W, KNIERIM J, KUDRIMOTI H, et al. A model of the neural basis of the rat's sense of direction[J]. Advances in Neural Information Processing Systems, 1994, 7: 173-180.
    [12] ZHANG K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory[J]. The Journal of Neuroscience, 1996, 16(6): 2112-2126.
    [13] BASSETT J P, TAUBE J S. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus[J]. The Journal of Neuroscience, 2001, 21(15): 5740-5751.
    [14] MUIR G M, BROWN J E, CAREY J P, et al. Disruption of the head direction cell signal after occlusion of the semicircular canals in the freely moving chinchilla[J]. The Journal of Neuroscience, 2009, 29(46): 14521-14533.
    [15] ROBINSON D. Integrating with neurons[J]. Annual Review of Neuroscience, 1989, 12: 33-45.
    [16] STACKMAN R W, CLARK A S, TAUBE J S. Hippocampal spatial representations require vestibular input[J]. Hippocampus, 2002, 12(3): 291-303.
    [17] STACKMAN R W, TAUBE J S. Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input[J]. The Journal of Neuroscience, 1997, 17(11): 4349-4358.
    [18] VALERIO S, TAUBE J S. Path integration: how the head direction signal maintains and corrects spatial orientation[J]. Nature Neuroscience, 2012, 15(10): 1445-1453.
    [19] AJABI Z, KEINATH A T, WEI X X, et al. Population dynamics of head-direction neurons during drift and reorientation[J]. Nature, 2023, 615(7954): 892-899.
    [20] KNIERIM J J, KUDRIMOTI H S, MCNAUGHTON B L. Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells[J]. Journal of Neurophysiology, 1998, 80(1): 425-446.
    [21] YOGANARASIMHA D, YU X, KNIERIM J J. Head direction cell representations maintain internal coherence during conflicting proximal and distal cue rotations: comparison with hippocampal place cells[J]. The Journal of Neuroscience, 2006, 26(2): 622-631.
    [22] ZUGARO M B, ARLEO A, BERTHOZ A, et al. Rapid spatial reorientation and head direction cells[J]. The Journal of Neuroscience, 2003, 23(8): 3478-3482.
    [23] ZUGARO M B, BERTHOZ A, WIENER S I. Background, but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons[J]. The Journal of Neuroscience, 2001, 21(14): RC154.
    [24] ASUMBISA K, PEYRACHE A, TRENHOLM S. Flexible cue anchoring strategies enable stable head direction coding in both sighted and blind animals[J]. Nature Communications, 2022, 13: 5483.
    [25] SARGOLINI F, FYHN M, HAFTING T, et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex[J]. Science, 2006, 312(5774): 758-762.
    [26] WILLS T J, CACUCCI F, BURGESS N, et al. Development of the hippocampal cognitive map in preweanling rats[J]. Science, 2010, 328(5985): 1573-1576.
    [27] LANGSTON R F, AINGE J A, COUEY J J, et al. Development of the spatial representation system in the rat[J]. Science, 2010, 328(5985): 1576-1580.
    [28] CALTON J L, TAUBE J S. Degradation of head direction cell activity during inverted locomotion[J]. The Journal of Neuroscience, 2005, 25(9): 2420-2428.
    [29] STACKMAN R W, TULLMAN M L, TAUBE J S. Maintenance of rat head direction cell firing during locomotion in the vertical plane[J]. Journal of Neurophysiology, 2000, 83(1): 393-405.
    [30] TAUBE J S, WANG S S, KIM S Y, et al. Updating of the spatial reference frame of head direction cells in response to locomotion in the vertical plane[J]. Journal of Neurophysiology, 2013, 109(3): 873-888.
    [31] STACKMAN R W, TAUBE J S. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity[J]. The Journal of Neuroscience, 1998, 18(21): 9020-9037.
    [32] SHINDER M E, TAUBE J S. Three-dimensional tuning of head direction cells in rats[J]. Journal of Neurophysiology, 2019, 121(1): 4-37.
    [33] ANGELAKI D E, NG J, ABREGO A M, et al. A gravity-based three-dimensional compass in the mouse brain[J]. Nature Communications, 2020, 11: 1855.
    [34] LAURENS J, KIM B, DICKMAN J D, et al. Gravity orientation tuning in macaque anterior thalamus[J]. Nature Neuroscience, 2016, 19(12): 1566-1568.
    [35] FINKELSTEIN A, DERDIKMAN D, RUBIN A, et al. Three-dimensional head-direction coding in the bat brain[J]. Nature, 2015, 517(7533): 159-164.
    [36] WANG R, WANG Y, XU X, et al. Brain works principle followed by neural information processing: a review of novel brain theory[J]. Artificial Intelligence Review, 2023, 56(1): 285-350.
    [37] WANG Y, XU X, PAN X, et al. Grid cell activity and path integration on 2-D manifolds in 3-D space[J]. Nonlinear Dynamics, 2021, 104(2): 1767-1780.
    [38] WANG Y, XU X, WANG R. Modeling the grid cell activity on non-horizontal surfaces based on oscillatory interference modulated by gravity[J]. Neural Networks, 2021, 141: 199-210.
    [39] XU X, WANG Y, WANG R. The place cell activity in three-dimensional space generated by multiple grid cell inputs[J]. Nonlinear Dynamics, 2022, 108(2): 1719-1731.
    [40] JEFFERY K J, WILSON J J, CASALI G, et al. Neural encoding of large-scale three-dimensional space: properties and constraints[J]. Frontiers in Psychology, 2015, 6: 927.
    [41] PAGE H J I, WILSON J J, JEFFERY K J. A dual-axis rotation rule for updating the head direction cell reference frame during movement in three dimensions[J]. Journal of Neurophysiology, 2018, 119(1): 192-208.
    [42] LAURENS J, ANGELAKI D E. A model-based reassessment of the three-dimensional tuning of head direction cells in rats[J]. Journal of Neurophysiology, 2019, 122(3): 1274-1287.
    [43] LAURENS J, ANGELAKI D E. The brain compass: a perspective on how self-motion updates the head direction cell attractor[J]. Neuron, 2018, 97(2): 275-289.
    [44] TAUBE J S, SHINDER M E. On the absence or presence of 3D tuned head direction cells in rats: a review and rebuttal[J]. Journal of Neurophysiology, 2020, 123(5): 1808-1827.
    [45] IRIARTE-DÍAZ J, SWARTZ S M. Kinematics of slow turn maneuvering in the fruit bat cynopterus brachyotis[J]. Journal of Experimental Biology, 2008, 211(21): 3478-3489.
    [46] BURAK Y, FIETE I R. Accurate path integration in continuous attractor network models of grid cells[J]. PLoS Computational Biology, 2009, 5(2): e1000291.
    [47] MCNAUGHTON B L, BATTAGLIA F P, JENSEN O, et al. Path integration and the neural basis of the 'cognitive map'[J]. Nature Reviews Neuroscience, 2006, 7(8): 663-678.
    [48] SAMSONOVICH A, MCNAUGHTON B L. Path integration and cognitive mapping in a continuous attractor neural network model[J]. The Journal of Neuroscience, 1997, 17(15): 5900-5920.
    [49] 程现军, 王毅泓, 王如彬. 默认模式网络与任务正网络之间相互拮抗的神经动力学分析[J]. 应用数学和力学, 2019, 40(2): 127-138.

    CHENG Xianjun, WANG Yihong, WANG Rubin. Neurodynamic analysis of mutual antagonism between default mode networks and task-positive networks[J]. Applied Mathematics and Mechanics, 2019, 40(2): 127-138. (in Chinese)
    [50] 戎伟峰, 王如彬. 耳蜗毛细胞活动的神经动力学分析[J]. 应用数学和力学, 2019, 40(2): 139-149.

    RONG Weifeng, WANG Rubin. Neurodynamic analysis of cochlear hair cell activity[J]. Applied Mathematics and Mechanics, 2019, 40(2): 139-149. (in Chinese)
  • 加载中
图(13)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-16
  • 修回日期:  2025-06-20
  • 网络出版日期:  2025-07-30
  • 刊出日期:  2025-07-01

目录

    /

    返回文章
    返回