Asymptotic Characterization of Non-Emptiness and Boundedness of Efficient Solution Sets for Nonconvex Multi-Objective Optimization Problems
edited-by
edited-by
Recommended by YANG Xinmin, M.AMM Editorial Board-
摘要: 优化问题解集的非空性和有界性在数值算法研究中发挥着重要作用. 该文利用渐近分析工具, 在正则性条件下研究了非凸多目标优化问题有效解集的非空性和有界性. 首先, 在正则条件下, 建立了非凸多目标优化问题的有效解集和真有效解集的内外渐近估计; 然后, 根据这些估计, 获得了非凸多目标优化问题有效解集的非空有界性的渐近刻画; 最后, 给出了非凸多目标优化问题有效解存在的必要条件.Abstract: The non-emptiness and boundedness of the solution sets of optimization problems play a crucial role in numerical algorithms. Based on asymptotic analysis, the non-emptiness and boundedness of the (proper) efficient solution sets for nonconvex multi-objective optimization problems under regularity conditions were obtained. Firstly, the inner and outer asymptotic estimations were established for the efficient solution sets and the properly efficient solution sets of nonconvex multi-objective optimization problems via asymptotic cones and asymptotic functions. Then, based on these estimates, the non-emptiness and boundedness of the efficient solution sets for nonconvex multi-objective optimization problems were characterized. Finally, some necessary conditions for the existence of efficient solutions to nonconvex multi-objective optimization problem were given.
-
Key words:
- nonconvex multi-objective optimization /
- efficient solution /
- regularity /
- asymptotic cone /
- asymptotic function
edited-byedited-by1) 我刊编委杨新民推荐 -
[1] RANGAIAH G P. Multi-Objective Optimization: Techniques and Applications in Chemical Engineering[M]. Hackensack, NJ: World Scientific, 2009. [2] FLIEGE J, WERNER R. Robust multiobjective optimization & applications in portfolio optimization[J]. European Journal of Operational Research, 2014, 234 (2): 422-433. doi: 10.1016/j.ejor.2013.10.028 [3] BOSSHARD R, KOLAR J W. Multi-objective optimization of 50 kW/85 kHz IPT system for public transport[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4 (4): 1370-1382. doi: 10.1109/JESTPE.2016.2598755 [4] YU G, JIN Y, OLHOFER M. A multiobjective evolutionary algorithm for finding knee regions using two localized dominance relationships[J]. IEEE Transactions on Evolutionary Computation, 2021, 25 (1): 145-158. doi: 10.1109/TEVC.2020.3008877 [5] GONZAGA C C, CASTILLO R A. A nonlinear programming algorithm based on non-coercive penalty functions[J]. Mathematical Programming, 2003, 96 (1): 87-101. doi: 10.1007/s10107-002-0332-z [6] HUANG X X, YANG X Q, TEO K L. Characterizing nonemptiness and compactness of the solution set of a convex vector optimization problem with cone constraints and applications[J]. Journal of Optimization Theory and Applications, 2004, 123 (2): 391-407. doi: 10.1007/s10957-004-5155-z [7] PARETO V. Cours D' économie Politique[M]. Paris: Pichon, Libraire, 1906. [8] EHRGOTT M. Multicriteria Optimization[M]. Berlin: Springer, 2000. [9] GEOFFRION A M. Proper efficiency and the theory of vector maximization[J]. Journal of Mathematical Analysis and Applications, 1968, 22 (3): 618-630. doi: 10.1016/0022-247X(68)90201-1 [10] DENG S. Characterizations of the nonemptiness and compactness of solution sets in convex vector optimization[J]. Journal of Optimization Theory and Applications, 1998, 96 (1): 123-131. doi: 10.1023/A:1022615217553 [11] DENG S. Characterizations of the nonemptiness and boundedness of weakly efficient solution sets of convex vector optimization problems in real reflexive Banach spaces[J]. Journal of Optimization Theory and Applications, 2009, 140 (1): 1-7. doi: 10.1007/s10957-008-9443-x [12] DENG S. Boundedness and nonemptiness of the efficient solution sets in multiobjective optimization[J]. Journal of Optimization Theory and Applications, 2010, 144 (1): 29-42. doi: 10.1007/s10957-009-9589-1 [13] CHEN Z. Asymptotic analysis in convex composite multiobjective optimization problems[J]. Journal of Global Optimization, 2013, 55 : 507-520. doi: 10.1007/s10898-012-0032-z [14] GUTIÉRREZ C, LÓPEZ R, NOVO V. Existence and boundedness of solutions in infinite-dimensional vector optimization problems[J]. Journal of Optimization Theory and Applications, 2014, 162 (2): 515-547. doi: 10.1007/s10957-014-0541-7 [15] FLORES-BAZÁN F, VERA C. Characterization of the nonemptiness and compactness of solution sets in convex and nonconvex vector optimization[J]. Journal of Optimization Theory and Applications, 2006, 130 (2): 185-207. doi: 10.1007/s10957-006-9098-4 [16] LI G H, LI S J, YOU M X. Recession function and its applications in optimization[J]. Optimization, 2021, 70 (12): 2559-2578. doi: 10.1080/02331934.2020.1786569 [17] LI G H, LI S J, YOU M X. Asymptotic analysis of scalarization functions and applications[J]. Journal of Industrial and Management Optimization, 2023, 19 (4): 2367-2380. doi: 10.3934/jimo.2022046 [18] WANG G, FU Y H. Characterizing the nonemptiness and compactness of weakly efficient solution sets for non-convex multiobjective optimization problems[J]. Operations Research Letters, 2024, 53 : 107092. doi: 10.1016/j.orl.2024.107092 [19] FLORES-BAZÁN F, LÓPEZ R, VERA C. Vector asymptotic functions and their application to multiobjective optimization problems[J]. SIAM Journal on Optimization, 2024, 34 (2): 1826-1851. doi: 10.1137/23M158098X [20] ROCKAFELLAR R T, WETS R J B. Variational Analysis[M]. Berlin: Springer, 1998. -
计量
- 文章访问数: 71
- HTML全文浏览量: 17
- PDF下载量: 22
- 被引次数: 0