留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非凸多目标优化问题有效解集的非空性与有界性的渐近刻画

刘应 傅小恒 唐莉萍

刘应, 傅小恒, 唐莉萍. 非凸多目标优化问题有效解集的非空性与有界性的渐近刻画[J]. 应用数学和力学, 2025, 46(4): 519-527. doi: 10.21656/1000-0887.450235
引用本文: 刘应, 傅小恒, 唐莉萍. 非凸多目标优化问题有效解集的非空性与有界性的渐近刻画[J]. 应用数学和力学, 2025, 46(4): 519-527. doi: 10.21656/1000-0887.450235
LIU Ying, FU Xiaoheng, TANG Liping. Asymptotic Characterization of Non-Emptiness and Boundedness of Efficient Solution Sets for Nonconvex Multi-Objective Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(4): 519-527. doi: 10.21656/1000-0887.450235
Citation: LIU Ying, FU Xiaoheng, TANG Liping. Asymptotic Characterization of Non-Emptiness and Boundedness of Efficient Solution Sets for Nonconvex Multi-Objective Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(4): 519-527. doi: 10.21656/1000-0887.450235

非凸多目标优化问题有效解集的非空性与有界性的渐近刻画

doi: 10.21656/1000-0887.450235
我刊编委杨新民推荐
基金项目: 

国家自然科学基金(重大项目) 11991024

国家自然科学基金(面上项目) 12171060

重庆市自然科学基金 ncamc2022-msxm01

重庆市自然科学基金 CSTB2024NSCQ-LZX0140

重庆市教委重大项目 KJZD-M202300504

详细信息
    作者简介:

    刘应(1997—), 女, 硕士生(E-mail: 623032146@qq.com)

    傅小恒(1999—), 男, 硕士生(E-mail: 1352886841@qq.com)

    通讯作者:

    唐莉萍(1985—), 女, 教授, 博士(通讯作者. E-mail: tanglipings@163.com)

  • 中图分类号: O221.6

Asymptotic Characterization of Non-Emptiness and Boundedness of Efficient Solution Sets for Nonconvex Multi-Objective Optimization Problems

Recommended by YANG Xinmin, M.AMM Editorial Board
  • 摘要: 优化问题解集的非空性和有界性在数值算法研究中发挥着重要作用. 该文利用渐近分析工具, 在正则性条件下研究了非凸多目标优化问题有效解集的非空性和有界性. 首先, 在正则条件下, 建立了非凸多目标优化问题的有效解集和真有效解集的内外渐近估计; 然后, 根据这些估计, 获得了非凸多目标优化问题有效解集的非空有界性的渐近刻画; 最后, 给出了非凸多目标优化问题有效解存在的必要条件.
    1)  我刊编委杨新民推荐
  • [1] RANGAIAH G P. Multi-Objective Optimization: Techniques and Applications in Chemical Engineering[M]. Hackensack, NJ: World Scientific, 2009.
    [2] FLIEGE J, WERNER R. Robust multiobjective optimization & applications in portfolio optimization[J]. European Journal of Operational Research, 2014, 234 (2): 422-433. doi: 10.1016/j.ejor.2013.10.028
    [3] BOSSHARD R, KOLAR J W. Multi-objective optimization of 50 kW/85 kHz IPT system for public transport[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4 (4): 1370-1382. doi: 10.1109/JESTPE.2016.2598755
    [4] YU G, JIN Y, OLHOFER M. A multiobjective evolutionary algorithm for finding knee regions using two localized dominance relationships[J]. IEEE Transactions on Evolutionary Computation, 2021, 25 (1): 145-158. doi: 10.1109/TEVC.2020.3008877
    [5] GONZAGA C C, CASTILLO R A. A nonlinear programming algorithm based on non-coercive penalty functions[J]. Mathematical Programming, 2003, 96 (1): 87-101. doi: 10.1007/s10107-002-0332-z
    [6] HUANG X X, YANG X Q, TEO K L. Characterizing nonemptiness and compactness of the solution set of a convex vector optimization problem with cone constraints and applications[J]. Journal of Optimization Theory and Applications, 2004, 123 (2): 391-407. doi: 10.1007/s10957-004-5155-z
    [7] PARETO V. Cours D' économie Politique[M]. Paris: Pichon, Libraire, 1906.
    [8] EHRGOTT M. Multicriteria Optimization[M]. Berlin: Springer, 2000.
    [9] GEOFFRION A M. Proper efficiency and the theory of vector maximization[J]. Journal of Mathematical Analysis and Applications, 1968, 22 (3): 618-630. doi: 10.1016/0022-247X(68)90201-1
    [10] DENG S. Characterizations of the nonemptiness and compactness of solution sets in convex vector optimization[J]. Journal of Optimization Theory and Applications, 1998, 96 (1): 123-131. doi: 10.1023/A:1022615217553
    [11] DENG S. Characterizations of the nonemptiness and boundedness of weakly efficient solution sets of convex vector optimization problems in real reflexive Banach spaces[J]. Journal of Optimization Theory and Applications, 2009, 140 (1): 1-7. doi: 10.1007/s10957-008-9443-x
    [12] DENG S. Boundedness and nonemptiness of the efficient solution sets in multiobjective optimization[J]. Journal of Optimization Theory and Applications, 2010, 144 (1): 29-42. doi: 10.1007/s10957-009-9589-1
    [13] CHEN Z. Asymptotic analysis in convex composite multiobjective optimization problems[J]. Journal of Global Optimization, 2013, 55 : 507-520. doi: 10.1007/s10898-012-0032-z
    [14] GUTIÉRREZ C, LÓPEZ R, NOVO V. Existence and boundedness of solutions in infinite-dimensional vector optimization problems[J]. Journal of Optimization Theory and Applications, 2014, 162 (2): 515-547. doi: 10.1007/s10957-014-0541-7
    [15] FLORES-BAZÁN F, VERA C. Characterization of the nonemptiness and compactness of solution sets in convex and nonconvex vector optimization[J]. Journal of Optimization Theory and Applications, 2006, 130 (2): 185-207. doi: 10.1007/s10957-006-9098-4
    [16] LI G H, LI S J, YOU M X. Recession function and its applications in optimization[J]. Optimization, 2021, 70 (12): 2559-2578. doi: 10.1080/02331934.2020.1786569
    [17] LI G H, LI S J, YOU M X. Asymptotic analysis of scalarization functions and applications[J]. Journal of Industrial and Management Optimization, 2023, 19 (4): 2367-2380. doi: 10.3934/jimo.2022046
    [18] WANG G, FU Y H. Characterizing the nonemptiness and compactness of weakly efficient solution sets for non-convex multiobjective optimization problems[J]. Operations Research Letters, 2024, 53 : 107092. doi: 10.1016/j.orl.2024.107092
    [19] FLORES-BAZÁN F, LÓPEZ R, VERA C. Vector asymptotic functions and their application to multiobjective optimization problems[J]. SIAM Journal on Optimization, 2024, 34 (2): 1826-1851. doi: 10.1137/23M158098X
    [20] ROCKAFELLAR R T, WETS R J B. Variational Analysis[M]. Berlin: Springer, 1998.
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  17
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-22
  • 修回日期:  2024-09-26
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回