留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偶应力弹性梯度理论的饱和孔隙介质中Rayleigh波的传播特性

李国强 郑佩 张克明

李国强, 郑佩, 张克明. 基于偶应力弹性梯度理论的饱和孔隙介质中Rayleigh波的传播特性[J]. 应用数学和力学, 2025, 46(10): 1329-1341. doi: 10.21656/1000-0887.450259
引用本文: 李国强, 郑佩, 张克明. 基于偶应力弹性梯度理论的饱和孔隙介质中Rayleigh波的传播特性[J]. 应用数学和力学, 2025, 46(10): 1329-1341. doi: 10.21656/1000-0887.450259
LI Guoqiang, ZHENG Pei, ZHANG Keming. Propagation Characteristics of Rayleigh Waves in Saturated Porous Media Based on the Couple-Stress Elastic Gradient Theory[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1329-1341. doi: 10.21656/1000-0887.450259
Citation: LI Guoqiang, ZHENG Pei, ZHANG Keming. Propagation Characteristics of Rayleigh Waves in Saturated Porous Media Based on the Couple-Stress Elastic Gradient Theory[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1329-1341. doi: 10.21656/1000-0887.450259

基于偶应力弹性梯度理论的饱和孔隙介质中Rayleigh波的传播特性

doi: 10.21656/1000-0887.450259
详细信息
    作者简介:

    李国强(1997—),男,硕士生(E-mail: 1767445763@qq.com);郑佩(1980—),男,副教授,硕士生导师(通讯作者. E-mail: aliaspei@usst.edu.cn);张克明(1983—),男,副教授,硕士生导师(E-mail: zhangkeming@usst.edu.cn).

    通讯作者:

    郑佩(1980—),男,副教授,硕士生导师(通讯作者. E-mail: aliaspei@usst.edu.cn)

  • 中图分类号: O347.4+1

Propagation Characteristics of Rayleigh Waves in Saturated Porous Media Based on the Couple-Stress Elastic Gradient Theory

  • 摘要: 基于偶应力弹性梯度理论,研究了饱和孔隙介质中Rayleigh波的传播特性.首先,基于偶应力理论建立了包含材料内禀长度的波动方程,并在频域内通过位移场的势函数分解,将两组耦合的波动方程解耦为4个标量的Helmholtz方程,分别控制P-1波、P-2波、SV波和SH波的传播.进一步,针对Rayleigh波,通过求解Helmholtz方程的特征值问题,确定了势函数的具体形式.然后,通过引入边界条件,求解了Rayleigh波的传播特性.最后,通过数值算例,研究了材料内禀长度对Rayleigh波的传播特性的影响规律.
  • RAYLEIGH L. On waves propagated along the plane surface of an elastic solid[J].Proceedings of the London Mathematical Society,1885,1(1): 4-11.
    [2]KIM G, IN C W, KIM J Y, et al. Air-coupled detection of nonlinear Rayleigh surface waves in concrete: application to microcracking detection[J].NDT & E International,2014,67: 64-70.
    [3]VOIGT W. Theoritical studies on the elasticity relationships of cristals[J].R Soc Sci,1887,34: 3-51.
    [4]COSSERAT E, COSSERAT F.Theory of Deformable Bodies[M]. Paris: Scientific Library A. Hermann and Sons, 1909.
    [5]TOUPIN R A. Elastic materials with couple-stresses[J].Archive for Rational Mechanics and Analysis,1962,11(1): 385-414.
    [6]TOUPIN R A. Theory of elasticity with couple-stress[J].Arch Rat Mech Anal,1964,17: 85-11.
    [7]KOITER W T. Couple stresses in the theory of elasticity Ⅰ & Ⅱ[J].Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen,1964,67: 17-44.
    [8]MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J].Archive for Rational Mechanics and Analysis,1962,11(1): 415-448.
    [9]YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J].International Journal of Solids and Structures,2002,39(10): 2731-2743.
    [10]ZHENG P, LI G, SUN P, et al. Couple-stress-based gradient theory of poroelasticity[J].Mathematics and Mechanics of Solids,2024,29(1): 173-190.
    [11]BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅰ: low-frequency range[J].The Journal of the Acoustical Society of America,1956,28(2): 168-178.
    [12]BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅱ: higher frequency range[J].The Journal of the Acoustical Society of America,1956,28(2): 179-191.
    [13]DING H, TONG L H, XU C, et al. On propagation characteristics of Rayleigh wave in saturated porous media based on the strain gradient nonlocal Biot theory[J].Computers and Geotechnics, 2022,141: 104522.
    [14]HIRAI H. Analysis of Rayleigh waves in saturated porous elastic media by finite element method[J].Soil Dynamics and Earthquake Engineering,1992,11(6): 311-326.
    [15]LIU H, ZHOU F, WANG L, et al. Propagation of Rayleigh waves in unsaturated porothermoelastic media[J].International Journal for Numerical and Analytical Methods in Geomechanics,2020,44(12): 1656-1675.
    [16]TONG L H, LAI S K, ZENG L L, et al. Nonlocal scale effect on Rayleigh wave propagation in porous fluid-saturated materials[J].International Journal of Mechanical Sciences,2018,148: 459-466.
    [17]SU C, GUAN W, YIN Y, et al. Elastic waves in fluid-saturated porous materials with a couple-stress solid phase[J].Journal of Sound and Vibration,2024,569: 117993.
    [18]MNCH I, NEFF P, MADEO A, et al. The modified indeterminate couple stress model: why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless[J].ZAMM-Journal of Applied Mathematics and Mechanics,2017,97(12): 1524-1554.
    [19]HADJESFANDIARI A R, DARGUSH G F. Couple stress theory for solids[J].International Journal of Solids and Structures,2011,48(18): 2496-2510.
    [20]HADJESFANDIARI A R. On the skew-symmetric character of the couple-stress tensor[J/OL].ArXiv: General Physics, 2013[2024-10-25].https://api.semanticscholar.org/CorpusID:116973411.
    [21]AKI K, RICHARDS P G.Quantitative Seismology[M]. 2nd ed. University Science Books,2002.
    [22]ZHENG P, DING B. Potential method for 3D wave propagation in a poroelastic medium and its applications to Lamb’s problem for a poroelastic half-space[J].International Journal of Geomechanics,2016,16(2): 04015048.
    [23]CHENG A H D.Poroelasticity[M]. Switzerland: Springer International Publishing, 2016.
    [24]MAVKO G, MUKERJI T, DVORKIN J.The Rock Physics Handbook[M]. 2nd ed. Cambridge: Cambridge University Press, 2009.
  • 加载中
计量
  • 文章访问数:  25
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-25
  • 修回日期:  2024-10-25
  • 网络出版日期:  2025-11-13

目录

    /

    返回文章
    返回