留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电复合材料介电击穿的相场模拟

王子荷 米璋 王杰

王子荷, 米璋, 王杰. 铁电复合材料介电击穿的相场模拟[J]. 应用数学和力学, 2024, 45(11): 1428-1439. doi: 10.21656/1000-0887.450266
引用本文: 王子荷, 米璋, 王杰. 铁电复合材料介电击穿的相场模拟[J]. 应用数学和力学, 2024, 45(11): 1428-1439. doi: 10.21656/1000-0887.450266
WANG Zihe, MI Zhang, WANG Jie. Phase Field Simulation of Dielectric Breakdown in Ferroelectric Composites[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1428-1439. doi: 10.21656/1000-0887.450266
Citation: WANG Zihe, MI Zhang, WANG Jie. Phase Field Simulation of Dielectric Breakdown in Ferroelectric Composites[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1428-1439. doi: 10.21656/1000-0887.450266

铁电复合材料介电击穿的相场模拟

doi: 10.21656/1000-0887.450266
基金项目: 

国家重点研发计划课题 2022YFB3807601

国家自然科学基金 12272338

国家自然科学基金 12192214

详细信息
    作者简介:

    王子荷(2001—),女,硕士生(E-mail: 22324113@zju.edu.cn)

    通讯作者:

    王杰(1975—),男,教授,博士,博士生导师(通讯作者. E-mail: jw@zju.edu.cn)

  • 中图分类号: O34

Phase Field Simulation of Dielectric Breakdown in Ferroelectric Composites

  • 摘要: 以铁电聚合物为基体和铁电陶瓷为填充物的铁电复合材料,克服了单相铁电材料大极化强度与高击穿强度二者不可兼得的关系,表现出优异的压电、储能等多场耦合性能,受到人们越来越多的关注. 然而铁电复合材料界面的应力和电场集中会引发材料的力电耦合失效,其中介电击穿是铁电复合材料的主要失效方式之一. 因此,理解陶瓷填充物对铁电复合材料介电击穿性能的影响,对其在高性能能量转换与存储器件中的应用至关重要. 该文针对铁电复合材料的多场耦合失效问题,构建包含极化、应变和击穿序参量的相场模型,研究了铁电复合材料在电载荷作用下的介电击穿行为. 相场模拟结果表明,随着陶瓷填充物颗粒尺寸的增大,电击穿路径会避开陶瓷颗粒,同时材料内部的最大电场会逐渐增大,从而导致复合材料的击穿强度会越来越低. 此外,模拟结果还发现介电击穿强度与填充物颗粒尺寸之间呈现出非线性关系. 该文研究结果为铁电复合材料介电击穿强度的设计提供了一定的理论基础.
  • 图  1  铁电材料的相关属性

    Figure  1.  Related properties of ferroelectric materials

    图  2  包含初始击穿相的铁电复合材料PVDF-BTO示意图,沿x正方向施加电场

    Figure  2.  Schematic diagram of ferroelectric composite PVDF-BTO containing an initial breakdown phase with an electric field applied along the x-positive direction

    图  3  在外加电场作用下、t*=0时刻的电场分布

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Electric field distributions at moment t*=0 under the applied electric field

    图  4  在外加电场作用下,t*=0时,复合材料相关特性

    Figure  4.  Under an applied electric field, the related characteristics of the composite at t*=0

    图  5  x方向240 kV/mm外加电场作用下的击穿路径随时间演化的瞬时状态

    Figure  5.  Transient states of the breakdown paths evolving with time under an applied electric field of 240 kV/mm in the x-direction

    图  6  在外加电场作用下电场Ex随时间演化的瞬时状态

    Figure  6.  Transient states of electric field Ex evolving with time under an applied electric field

    图  7  在外加电场作用下电场Ey随时间演化的瞬时状态

    Figure  7.  Transient states of electric field Ey evolving with time under an applied electric field

    图  8  陶瓷颗粒尺寸对铁电复合材料击穿强度的影响

    Figure  8.  Effects of ceramic particle sizes on breakdown strengths of ferroelectric composites

    A1  PVDF的材料参数

    A1.   The material parameters of the PVDF

    Landau coefficient gradient energy coefficient of polarization
    α1/(J·m/C2) -1.412(T-108)×107 G11/(J·m3/C2) 5×10-7
    α11/(J·m5/C4) 1.842×1011 G12/(J·m3/C2) 0
    α12/(J·m5/C4) 3.684×1011 G44/(J·m3/C2) 2.5×10-7
    α111/(J·m9/C6) 2.585×1013 G44/(J·m3/C2) 2.5×10-7
    α112/(J·m9/C6) 7.775×1013
    electrostrictive coefficient elastic constant
    q11/(J·m/C2) -8.52×109 C11/(J/m3) 3.41×109
    q12/(J·m/C2) -4.20×109 C12/(J/m3) 1.68×109
    q44/(J·m/C2) 0 C44/(J/m3) 8.65×109
    breakdown strength gradient energy coefficient of breakdown
    Eb/(kV/mm) 370 Γ/(J/m) 1×10-10
    gradient energy coefficient of breakdown
    kw 20
    kc 0.1
    kf 0.1
    下载: 导出CSV

    A2  BaTiO3的材料参数

    A2.   The material parameters of the BaTiO3

    Landau coefficient gradient energy coefficient of polarization
    α1/(m2·N/C2) 4.124/(T-115)×105 G11/(m4·N/C2) 2.2×10-11
    α11/(m6·N/C4) -2.097×108 G12/(m4·N/C2) 0
    α12/(m6·N/C4) 7.974×108 G44/(m4·N/C2) 1.1×10-11
    α111/(m10·N/C6) 1.294×109 G44/(m4·N/C2) 1.1×10-11
    α112/(m10·N/C6) -1.950×109 α1111/(m14·N/C8) 3.863×1010
    α1112/(m14·N/C8) 2.539×1010 α1122/(m14·N/C8) 1.637×1010
    electrostrictive coefficient elastic constant
    q11/(m4/C2) 1.13×1010 C11/(N/m2) 1.78×1011
    q12/(m4/C2) 2.86×108 C12/(N/m2) 9.60×1010
    q44/(m4/C2) 7.08×109 C44/(N/m2) 1.22×1011
    breakdown strength gradient energy coefficient of breakdown
    Eb/(kV/mm) 50 Γ/(J/m) 1×10-10
    gradient energy coefficient of breakdown
    kc 0.1
    kf 0.1
    下载: 导出CSV
  • [1] ZHENG T, WU J G, XIAO D Q, et al. Recent development in lead-free perovskite piezoelectric bulk materials[J]. Progress in Materials Science, 2018, 98: 552-624. doi: 10.1016/j.pmatsci.2018.06.002
    [2] LU S G, ZHANG Q M. Electrocaloric materials for solid-state refrigeration[J]. Advanced Materials, 2009, 21(19): 1983-1987. doi: 10.1002/adma.200802902
    [3] LIU Y, SCOTT J F, DKHIL B. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives[J]. Applied Physics Reviews, 2016, 3(3): 031102. doi: 10.1063/1.4958327
    [4] PAN H, KURSUMOVIC A, LIN Y H, et al. Dielectric films for high performance capacitive energy storage: multiscale engineering[J]. Nanoscale, 2020, 12(38): 19582-19591. doi: 10.1039/D0NR05709F
    [5] YUAN Q B, CHEN M, ZHAN S L, et al. Ceramic-based dielectrics for electrostatic energy storage applications: fundamental aspects, recent progress, and remaining challenges[J]. Chemical Engineering Journal, 2022, 446: 136315. doi: 10.1016/j.cej.2022.136315
    [6] SONG Y, SHEN Y, LIU H Y, et al. Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymermatrix[J]. Journal of Materials Chemistry, 2012, 22(32): 16491-16498. doi: 10.1039/c2jm32579a
    [7] YU K, NIU Y J, ZHOU Y C, et al. Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density[J]. Journal of the American Ceramic Society, 2013, 96(8): 2519-2524. doi: 10.1111/jace.12338
    [8] WANG Y U, TAN D Q, KRAHN J. Computational study of dielectric composites with core-shell filler particles[J]. Journal of Applied Physics, 2011, 110(4): 044103. doi: 10.1063/1.3624660
    [9] WANG J J, SONG Y, MA X Q, et al. Static magnetic solution in magnetic composites with arbitrary susceptibility inhomogeneity and anisotropy[J]. Journal of Applied Physics, 2015, 117(4): 043907. doi: 10.1063/1.4906567
    [10] DISSADO L A. Understanding electrical trees in solids: from experiment to theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2002, 9(4): 483-497. doi: 10.1109/TDEI.2002.1024425
    [11] LIEBAULT J, VALLAYER J, GOEURIOT D, et al. How the trapping of charges can explain the dielectric breakdown performance of alumina ceramics[J]. Journal of the European Ceramic Society, 2001, 21(3): 389-397. doi: 10.1016/S0955-2219(00)00186-2
    [12] NEUSEL C, JELITTO H, SCHMIDT D, et al. Thickness-dependence of the breakdown strength: analysis of the dielectric and mechanical failure[J]. Journal of the European Ceramic Society, 2015, 35(1): 113-123. doi: 10.1016/j.jeurceramsoc.2014.08.028
    [13] SHEN Z H, WANG J J, LIN Y H, et al. High-throughput phase-field design of high-energy-density polymer nanocomposites[J]. Advanced Materials, 2018, 30(2): 1704380. doi: 10.1002/adma.201704380
    [14] TANAKA T, GREENWOOD A. Effects of charge injection and extraction on tree initiation in polyethylene[J]. IEEE Transactions on Power Apparatus and Systems, 1978, PAS-97(5): 1749-1759. doi: 10.1109/TPAS.1978.354668
    [15] WADSWORTH J, CRABTREE G W, HEMLEY R J, et al. Basic research needs for materials under extreme environments[C]//Report of the Basic Energy Sciences Workshop on Materials Under Extreme Environments. 2007. DOI: 10.2172/935440.
    [16] MI Z, ZHANG Y, HOU X, et al. Phase field modeling of dielectric breakdown of ferroelectric polymers subjected to mechanical and electrical loadings[J]. International Journal of Solids and Structures, 2021, 217/218: 123-133. doi: 10.1016/j.ijsolstr.2021.02.009
    [17] CAI Z M, WANG X H, LUO B C, et al. Dielectric response and breakdown behavior of polymer-ceramic nanocomposites: the effect of nanoparticle distribution[J]. Composites Science and Technology, 2017, 145: 105-113. doi: 10.1016/j.compscitech.2017.03.039
    [18] SONG Y, SHEN Y, HU P H, et al. Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers[J]. Applied Physics Letters, 2012, 101(15): 152904. doi: 10.1063/1.4760228
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  24
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2024-10-31
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回