留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两类集优化问题的Hadamard适定性研究

程翔 彭再云 杨鑫 文铭

程翔, 彭再云, 杨鑫, 文铭. 两类集优化问题的Hadamard适定性研究[J]. 应用数学和力学, 2025, 46(7): 926-938. doi: 10.21656/1000-0887.450273
引用本文: 程翔, 彭再云, 杨鑫, 文铭. 两类集优化问题的Hadamard适定性研究[J]. 应用数学和力学, 2025, 46(7): 926-938. doi: 10.21656/1000-0887.450273
CHENG Xiang, PENG Zaiyun, YANG Xin, WEN Ming. Hadamard Well-Posedness in 2 Types of Set Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(7): 926-938. doi: 10.21656/1000-0887.450273
Citation: CHENG Xiang, PENG Zaiyun, YANG Xin, WEN Ming. Hadamard Well-Posedness in 2 Types of Set Optimization Problems[J]. Applied Mathematics and Mechanics, 2025, 46(7): 926-938. doi: 10.21656/1000-0887.450273

两类集优化问题的Hadamard适定性研究

doi: 10.21656/1000-0887.450273
基金项目: 

国家自然科学基金(面上项目) 12271067

重庆市自然科学基金面上项目 CSTB2024NSCQ-MSX0973

重庆市教委科技研究项目重点项目 KJZD-202200704

重庆市高等教育教学改革研究项目重点项目 232072

重庆市研究生教育教学改革项目 yjg223094

教育部协同育人项目 220503414180513

详细信息
    作者简介:

    程翔(1999—), 女, 硕士生(E-mail: chengxiang9599@163.com)

    通讯作者:

    彭再云(1980—), 男, 教授, 博士, 博士生导师(通讯作者. E-mail: pengzaiyun@126.com)

  • 中图分类号: O224

Hadamard Well-Posedness in 2 Types of Set Optimization Problems

  • 摘要: 该文主要研究上序关系下集优化问题(P)和无限集优化问题(ISOP)的Hadamard适定性. 首先, 在集值映射序列Gamma-收敛的情形下, 给出了问题(P)的广义Hadamard适定性和ε-广义Hadamard适定性的概念, 讨论了这两类适定性之间的关系, 得到了问题(P)的Hadamard适定性的充分条件. 然后, 在约束集和目标函数都扰动的情形下, 利用Hausdorff-锥连续性研究了问题(ISOP)的Hadamard适定性的充分条件. 所得的结果改进了相关文献, 丰富了集优化问题的研究.
  • 图  1  F的图像

    Figure  1.  The image of F

    图  2  F(x0)-int C-εe的图像

    Figure  2.  The image of F(x0)-int C-εe

    图  3  F的图像

    Figure  3.  The image of F

    图  4  Fn的图像

    Figure  4.  The image of Fn

  • [1] KUROIWA D. Existence theorems of set optimization with set-valued maps[J]. Journal of Information and Optimization Sciences, 2003, 24 (1): 73-84.
    [2] KHAN A A, TAMMER C, ZǍLINESCU C. Set-Valued Optimization: an Introduction With Applications[M]. Berlin, Heidelberg: Springer, 2015.
    [3] PENG Z Y, CHEN X J, ZHAO Y B, et al. Painlevé-Kuratowski convergence of minimal solutions for set-valued optimization problems via improvement sets[J]. Journal of Global Optimization, 2023, 87 (2): 759-781.
    [4] HAN Y, ZHANG K, HUANG N J. The stability and extended well-posedness of the solution sets for set optimization problems via the Painlevé-Kuratowski convergence[J]. Mathematical Methods of Operations Research, 2020, 91 (1): 175-196.
    [5] HAN Y. Painlevé-Kuratowski convergences of the solution sets for set optimization problems with cone-quasiconnectedness[J]. Optimization, 2022, 71 (7): 2185-2208.
    [6] LALITHA C S. External and internal stability in set optimization using gamma convergence[J]. Carpathian Journal of Mathematics, 2019, 35 (3): 393-406.
    [7] 邵重阳, 彭再云, 刘芙萍, 等. 改进集映射下参数广义向量拟平衡问题解映射的Berge下半连续性[J]. 应用数学和力学, 2020, 41 (8): 912-920.

    SHAO Chongyang, PENG Zaiyun, LIU Fuping, et al. Berge lower semi-continuity of parametric generalized vector quasi-equilibrium problems under improvement set mappings[J]. Applied Mathematics and Mechanics, 2020, 41 (8): 912-920. (in Chinese)
    [8] 曾悦, 彭再云, 梁仁莉, 等. 自由支配集下近似平衡约束向量优化问题的稳定性研究[J]. 应用数学和力学, 2021, 42 (9): 958-967. doi: 10.21656/1000-0887.410244

    ZENG Yue, PENG Zaiyun, LIANG Renli, et al. Stability of vector optimization problems under approximate equilibrium constraints via free-disposal sets[J]. Applied Mathematics and Mechanics, 2021, 42 (9): 958-967. (in Chinese) doi: 10.21656/1000-0887.410244
    [9] GERTH C, WEIDNER P. Nonconvex separation theorems and some applications in vector optimization[J]. Journal of Optimization Theory and Applications, 1990, 67 (2): 297-320.
    [10] PENG Z Y, PENG J W, LONG X J, et al. On the stability of solutions for semi-infinite vector optimization problems[J]. Journal of Global Optimization, 2018, 70 (1): 55-69.
    [11] PENG Z Y, WANG X, YANG X M. Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems[J]. Set-Valued and Variational Analysis, 2019, 27 (1): 103-118.
    [12] KUROIWA D. Some duality theorems of set-valued optimization with natural criteria[C]//Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis. Singapore: World Scientific, 1999: 221-228.
    [13] HADAMARD J. Sur les problèmes aux dérivées partielles et leur signification physique[J]. Princeton University Bulletin, 1902, 13 : 49-52.
    [14] TIKHONOV A N. On the stability of the functional optimization problem[J]. USSR Computational Mathematics and Mathematical Physics, 1966, 6 (4): 28-33.
    [15] DONTCHEV A L, ZOLEZZI T. Well-Posed Optimization Problems, Lecture Notes in Mathematics[M]. Berlin: Springer, 1993.
    [16] ANH L Q, KHANH P Q. Continuity of solution maps of parametric quasiequilibrium problems[J]. Journal of Global Optimization, 2010, 46 (2): 247-259.
    [17] PENG Z Y, ZHAO Y B, YIU K F C, et al. Stability analysis for semi-infinite vector optimization problems under functional perturbations[J]. Numerical Functional Analysis and Optimization, 2022, 43 (9): 1027-1049.
    [18] 曾静, 彭再云, 张石生. 广义强向量拟平衡问题解的存在性和Hadamard适定性[J]. 应用数学和力学, 2015, 36 (6): 651-658. doi: 10.3879/j.issn.1000-0887.2015.06.009

    ZENG Jing, PENG Zaiyun, ZHANG Shisheng. Existence and hadam ard well-posedness of solutions to generalized strong vector quasi-equilibrium problems[J]. Applied Mathematics and Mechanics, 2015, 36 (6): 651-658. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.06.009
    [19] ZHANG W Y, LI S J, TEO K L. Well-posedness for set optimization problems[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71 (9): 3769-3778.
    [20] LI S J, ZHANG W Y. Hadamard well-posed vector optimization problems[J]. Journal of Global Optimization, 2010, 46 (3): 383-393.
    [21] ZENG J, LI S J, ZHANG W Y, et al. Hadamard well-posedness for a set-valued optimization problem[J]. Optimization Letters, 2013, 7 (3): 559-573.
    [22] LONG X J, PENG J W, PENG Z Y. Scalarization and pointwise well-posedness for set optimization problems[J]. Journal of Global Optimization, 2015, 62 (4): 763-773.
    [23] GUPTA M, SRIVASTAVA M. Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior[J]. Journal of Global Optimization, 2019, 73 (2): 447-463.
    [24] MIHOLCA M. Global well-posedness in set optimization[J]. Numerical Functional Analysis and Optimization, 2021, 42 (14): 1700-1717.
    [25] GUPTA M, SRIVASTAVA M. Hadamard well-posedness and stability in set optimization[J]. Positivity, 2024, 28 (1): 7.
    [26] PENG Z Y, LONG X J, WANG X F, et al. Generalized Hadamard well-posedness for infinite vector optimization problems[J]. Optimization, 2017, 66 (10): 1563-1575.
    [27] DUY T Q. Hadamard well-posedness for a set optimization problem with an infinite number of constraints[J]. Optimization, 2024, 73 (5): 1625-1643.
    [28] BERGE C. Topological Spaces[M]. London: Oliver and Boyd, 1963.
    [29] AUBIN J P, EKELAND I. Applied Nonlinear Analysis[M]. New York: Wiley, 1984.
    [30] GOPFERT A, RIAHI H, TAMMER C, et al. Variational Methods in Partially Ordered Spaces[M]. New York: Springer, 2003.
    [31] LUC D T. Theory of Vector Optimization[M]. Berlin, Heidelberg: Springer, 1989.
    [32] HERNÁNDEZ E, LÓPEZ R. About asymptotic analysis and set optimization[J]. Set-Valued and Variational Analysis, 2019, 27 (3): 643-664.
  • 加载中
图(4)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-15
  • 修回日期:  2025-06-08
  • 网络出版日期:  2025-07-30
  • 刊出日期:  2025-07-01

目录

    /

    返回文章
    返回