Tests and Numerical Analyses of the Composite Casing Containment Under Hydrothermal Environment
-
摘要: 为获得碳纤维增强树脂基复合材料(CFRP)机匣在服役环境下的包容特性,对其分别进行了湿热老化前后的两次高速冲击弹道试验,并建立了对应的机匣吸湿率分区湿热试验仿真模型与有限元高速冲击数值仿真分析模型. 结果表明:湿热老化作用对于CFRP机匣的抗冲击能力及能量吸收能力均有显著影响. 在高速冲击下,未湿热老化机匣的抗冲击能力及能量吸收能力优于湿热老化机匣. 高速冲击下,CFRP机匣的损伤形式主要以纤维和基体的拉伸失效为主,伴随着一定数量的纤维压溃和面内剪切失效,压缩失效基本没有出现,损伤出现在冲击区域附近,并沿机匣轴向与周向扩展. 此外,吸湿层的基体拉伸失效面积显著大于未老化层的基体拉伸失效面积,验证了湿热老化作用下基体力学性能的退化.Abstract: To obtain the inclusion characteristics of carbon fiber resin matrix composite casing in service environment, 2 high-speed impact ballistic tests were conducted before and after hygrothermal treatment, and the corresponding simulation model for the casing hygroscopicity partition hygrothermal test simulation model along with the finite element high-speed impact numerical simulation-analysis model, was established. The results show that, the hygrothermal treatment has significant effects on the impact resistance and energy absorption capacity of the carbon fiber resin matrix composite casing. Under the high-speed impact, the impact resistance and energy absorption capacity of the casing without hygrothermal treatment are better than those of the casing with hygrothermal treatment. The damage form of the casing under high-speed impact is dominated by the tensile failure of fiber and matrix, accompanied by a certain amount of fiber crush and in-plane shear failure, with little or no compression failure observed. The damage occurs in the vicinity of the impact area, and extends along the axial and circumferential direction of the casing. In addition, the tensile failure area of the matrix of the hygrothermally treated layer is significantly larger than that of the matrix of the untreated layer, which verifies the degradation of the mechanical properties of the matrix after hygrothermal treatment.
-
Key words:
- aero-engine /
- impact behavior /
- composite casing /
- hygrothermal treatment /
- ballistic impact test
edited-byedited-by1) 我刊青年编委刘璐璐、编委陈伟来稿 -
表 1 湿热试验数据记录
Table 1. Material mechanical properties used for TG800H/E1806
specimen test temperature/℃ soaking hours/h mass before test/g mass after test/g hygroscopicity/% casing 85 720 3 472.95 3 514.05 1.18 laminate 85 720 68 68.64 0.94 表 2 空气炮打靶试验记录
Table 2. Records of the air cannon targeting tests
target test mass of blade /g incidence velocity /(m/s) residual speed /(m/s) damage casing without hygrothermal treatment 405 144 100 penetration casing with hygrothermal treatment 403 140 105 penetration 表 3 两次试验机匣吸收能量值
Table 3. Absorbed energy values of 2 tests respectively
target test ΔE/J casing without hygrothermal treatment 2 174.0 casing with hygrothermal treatment 1 727.9 表 4 网格敏感性验证
Table 4. The mesh sensitivity verification
number FEA element size/(mm×mm×mm) FEA element quantity ΔE/J 1 6×6×0.125 40 000 2 591.7 2 5×5×0.125 57 600 1 978.4 3 4×4×0.125 92 416 1 886.2 4 3×3×0.125 160 000 1 902.6 表 5 复合材料机匣单独铺层的铺层角度
Table 5. Individual ply angles of the composite casing
number of composite layers ply angle /(°) number of composite layers ply angle /(°) 1 45 17 90 2 90 18 45 3 -45 19 0 4 90 20 -45 5 0 21 90 6 90 22 45 7 -45 23 0 8 0 24 90 9 90 25 0 10 0 26 -45 11 45 27 90 12 90 28 0 13 -45 29 90 14 0 30 -45 15 45 31 90 16 90 32 45 表 6 TG800H-12k/E1806材料参数
Table 6. Material parameters of TG800H-12k/E180
parameter symbol without hygrothermal treatment with hygrothermal treatment density ρ/(kg/m3) 1 560 1 560 longitudinal Young’s modulus E1/GPa 164 167 transverse Young’s modulus (E2=E3)/GPa 9.41 5.71 Poisson’s ratio ν12=ν21
ν230.3
0.30.3
0.3longitudinal shear modulus (G12=G13)/MPa 5 090 3 410 transverse shear modulus G23/MPa 3 700 2 480 shear strength S/MPa 88.7 48.2 longitudinal tensile strength XT/MPa 2 744 2 520 longitudinal compressive strength XC/MPa 1 450 1 081 transverse tensile strength YT/MPa 74.1 46 transverse compressive strength YC/MPa 272 146 fiber shear strength SFS/MPa 251 251 fiber compressive strength SFC/MPa 350 350 strain rate constant C1
C2=C3=C40.014
0.0420.014
0.042damage angle φ/(°) 10 10 damage parameter m1=m2
m3=m42
0.22
0.2表 7 层间材料性能参数
Table 7. Material parameters of cohesive elements
parameter symbol without hygrothermal treatment with hygrothermal treatment hygroscopicity 1%~2% cohesive stiffness $k_n^0 / \mathrm{GPa}$ 105 105 105 $\left(k_s^0=k_t^0\right) / \mathrm{GPa}$ 105 105 105 critical energy release rate $G_n^{\mathrm{C}} /\left(\mathrm{J} / \mathrm{m}^2\right)$ 280 370.7 254.6 $\left(G_s^{\mathrm{C}}=G_t^{\mathrm{C}}\right) /\left(\mathrm{J} / \mathrm{m}^2\right)$ 2 710 1 710 2 122 cohesive stress $t_n^0 /\left(\mathrm{J} / \mathrm{m}^2\right)$ 60 43 67.1 $t_s^0=t_t^0 / \mathrm{MPa}$ 103 74 115 表 8 TC4材料参数设置(基本物理参数)
Table 8. Material parameters of TC4 (basic physical parameters)
E/GPa ν ρ/(kg/m3) Tm/K Tr/K Cp/(J/(kg·K)) 135 0.33 4 430 1 922 293 563 表 9 TC4材料参数设置(Johnson-Cook参数)
Table 9. Material parameters of TC4 (Johnson-Cook parameters)
$\dot{\varepsilon}_0 / \mathrm{s}^{-1}$ A/MPa B/MPa C n m 4×10-4 1 060 1 090 0.011 7 0.884 1.1 表 10 TC4材料参数设置(Johnson-Cook失效准则参数)
Table 10. Material parameters of TC4 (Johnson-Cook failure criterion parameters)
D1 D2 D3 D4 D5 -0.09 0.27 0.48 0.014 3.87 表 11 TC4材料参数设置(状态方程参数)
Table 11. Material parameters of TC4 (parameters of the equation of state)
S1 S2 S3 γ0 α 1.028 0 0 1.230 0 表 12 两次试验与仿真叶片剩余速度对比
Table 12. Comparison of blade residual velocities
casing type impact test residual velocity impact simulation residual velocity inaccuracy/% casing without hygrothermal treatment 100 109.4 9.4 casing with hygrothermal treatment 105 110.8 5.5 -
[1] 陈光. 航空发动机结构设计分析[M]. 北京: 北京航空航天大学出版社, 2006: 548-551.CHEN Guang. Analysis of Aeroengine Structure Design[M]. Beijing: Beihang University Press, 2006: 548-551. (in Chinese) [2] United States Air Force. Engine structural integrity program: MIL2STD21783B[S]. USA: Department of Defense, 2002. [3] 中国民用航空局. 航空发动机适航规定: CCAR—33R2[S]. 北京: 中国民用航空局, 2016.Civil Aviation Administration of China. Aviation engine air-worthiness regulations: CCAR—33R2[S]. Beijing: Civil Aviation Administration of China, 2016. (in Chinese) [4] HOLMES M. Carbon fibre reinforced plastics market continues growth path[J]. Reinforced Plastics, 2013, 57 (6): 24-29. doi: 10.1016/S0034-3617(13)70186-3 [5] MARSH G. Aero engines lose weight thanks to composites[J]. Reinforced Plastics, 2012, 56 (6): 32-35. doi: 10.1016/S0034-3617(12)70146-7 [6] MAZUMDAR S. Composites Manufacturing: Materials, Product, and Process Engineering[M]. Boca Raton: CRC Press, 2001. [7] 沈尔明, 王志宏, 赵凤飞, 等. 风扇机匣材料应用现状与发展[J]. 航空制造技术, 2013, 56 (13): 92-95.SHEN Erming, WANG Zhihong, ZHAO Fengfei, et al. Application and development of material for aeroengine fan case[J]. Aeronautical Manufacturing Technology, 2013, 56 (13): 92-95. (in Chinese) [8] 李佳楠, 姜亚明, 项赫, 等. 高性能纤维增强树脂基复合材料湿热老化研究进展[J]. 化工新型材料, 2024, 52 (1): 1-7.LI Jianan, JIANG Yaming, XIANG He, et al. Research progress on the hygrothermal aging of high-performance fiber reinforced resin matrix composites[J]. New Chemical Materials, 2024, 52 (1): 1-7. (in Chinese) [9] DEWHURST T B. The impact load on containment rings during a multiple blade shed in aircraft gas turbine engines[C]//Proceedings of the ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. Orlando, FL, USA: ASME, 1991. [10] RICHARDSON I J, HYDE T M, BECKER A A, et al. A three-dimensional finite element investigation of the bolt stresses in an aero-engine Curvic coupling under a blade release condition[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2000, 214 (4): 231-245. doi: 10.1243/0954410001532033 [11] 张伯熹, 宣海军, 吴荣仁. 航空发动机涡轮叶片包容模拟试验研究[J]. 机械工程师, 2006(10): 114-116.ZHANG Boxi, XUAN Haijun, WU Rongren. Research on aero-engine turbine blade containment experiment[J]. Mechanical Engineer, 2006(10): 114-116. (in Chinese) [12] 古兴瑾. 复合材料层板高速冲击损伤研究[D]. 南京: 南京航空航天大学, 2011.GU Xingjin. Research on high velocity impact damage of composite laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese) [13] 蔡雄峰. 复合材料层合板高速冲击损伤研究[D]. 天津: 中国民航大学, 2020.CAI Xiongfeng. Research on high-speed impact damage of composite laminates[D]. Tianjin: Civil Aviation University of China, 2020. (in Chinese) [14] 何庆, 宣海军, 刘璐璐. 某型发动机一级风扇机匣包容性数值仿真[J]. 航空动力学报, 2012, 27 (2): 295-300.HE Qing, XUAN Haijun, LIU Lulu. Numerical analysis of real aero-engine first-stage fan blade containment[J]. Journal of Aerospace Power, 2012, 27 (2): 295-300. (in Chinese) [15] 杜长美. 三维四向编织复合材料湿热老化后低速冲击及其剩余压缩性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2023.DU Changmei. Study on low-velocity impact and residual compression properties of three-dimensional four-directions braided composites after damp-heat aging[D]. Harbin: Harbin University of Science and Technology, 2023. (in Chinese) [16] MOKHTAR H, SICOT O, ROUSSEAU J, et al. The influence of ageing on the impact damage of carbon epoxy composites[J]. Procedia Engineering, 2011, 10 : 2615-2620. doi: 10.1016/j.proeng.2011.04.436 [17] HOSUR M V, JAIN K, CHOWDHURY F, et al. Low-velocity impact response of carbon/epoxy laminates subjected to cold-dry and cold-moist conditioning[J]. Composite Structures, 2007, 79 (2): 300-311. doi: 10.1016/j.compstruct.2006.11.011 [18] ZHANG C, BINIENDA W K, MORSCHER G N, et al. Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites[J]. Composites (Part A): Applied Science and Manufacturing, 2013, 46 : 34-44. doi: 10.1016/j.compositesa.2012.10.006 [19] ATAS C, DOGAN A. An experimental investigation on the repeated impact response of glass/epoxy composites subjected to thermal ageing[J]. Composites Part B: Engineering, 2015, 75 : 127-134. doi: 10.1016/j.compositesb.2015.01.032 [20] 徐凯龙. 循环湿热作用下三维编织复合材料力学性能与抗冲击性能研究[D]. 南京: 南京航空航天大学, 2018.XU Kailong. Effect of cyclic hygrothermal aging on mechanical properties and impact resistance of three dimensional braided composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese) [21] LIU L, ZHAO Z, CHEN W, et al. An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites[J]. Composite Structures, 2018, 204 : 645-657. doi: 10.1016/j.compstruct.2018.08.009 [22] 惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究[J]. 振动与冲击, 2016, 35 (22): 161-168.HUI Xulong, MU Rangke, BAI Chunyu, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy[J]. Journal of Vibration and Shock, 2016, 35 (22): 161-168. (in Chinese) -