留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含无界时滞的微极流方程组稳态解的稳定性

易卢燕 刘国威

易卢燕, 刘国威. 含无界时滞的微极流方程组稳态解的稳定性[J]. 应用数学和力学, 2025, 46(4): 551-562. doi: 10.21656/1000-0887.450300
引用本文: 易卢燕, 刘国威. 含无界时滞的微极流方程组稳态解的稳定性[J]. 应用数学和力学, 2025, 46(4): 551-562. doi: 10.21656/1000-0887.450300
YI Luyan, LIU Guowei. Stability of Stationary Solutions to Micropolar Fluid Equations With Unbounded Delay[J]. Applied Mathematics and Mechanics, 2025, 46(4): 551-562. doi: 10.21656/1000-0887.450300
Citation: YI Luyan, LIU Guowei. Stability of Stationary Solutions to Micropolar Fluid Equations With Unbounded Delay[J]. Applied Mathematics and Mechanics, 2025, 46(4): 551-562. doi: 10.21656/1000-0887.450300

含无界时滞的微极流方程组稳态解的稳定性

doi: 10.21656/1000-0887.450300
基金项目: 

中国博士后科学基金 2022M722105

重庆市自然科学基金(面上项目) CSTB2024NSCQ-MSX1089

重庆市教育委员会科学技术研究基金 KJQN202200563

详细信息
    作者简介:

    易卢燕(1999—),女,硕士生(E-mail: yiluyan112022@163.com)

    通讯作者:

    刘国威(1988—),男,博士(通讯作者. E-mail: guoweiliu@cqnu.edu.cn)

  • 中图分类号: O29

Stability of Stationary Solutions to Micropolar Fluid Equations With Unbounded Delay

  • 摘要: 利用四种不同的技术结合稳定性理论研究了含无界时滞的微极流方程组稳态解的稳定性.结果表明,当无界时滞函数关于时间连续可微时, 非平凡稳态解具有局部稳定性和平凡稳态解具有渐近稳定性;当无界时滞函数关于时间仅连续时, 非平凡稳态解具有全局稳定性;当无界时滞为比例时滞时, 平凡稳态解具有多项式稳定性.
  • [1] ERINGEN A. Theory of micropolar fluids[J]. Indiana University Mathematics Journal, 1966, 16(1): 16001.
    [2] DONG B Q, ZHANG Z. Global regularity of the 2D micropolar fluid flows with zero angular viscosity[J]. Journal of Differential Equations, 2010, 249(1): 200-213. doi: 10.1016/j.jde.2010.03.016
    [3] GALDI G P, RIONERO S. A note on the existence and uniqueness of solutions of the micropolar fluid equations[J]. International Journal of Engineering Science, 1977, 15(2): 105-108. doi: 10.1016/0020-7225(77)90025-8
    [4] ŁUKASZEWICZ G. Micropolar Fluids: Theory and Applications[M]//Modeling and Simulation in Science, Engineering and Technology. Boston: Birkhäuser, 1999.
    [5] ŁUKASZEWICZ G. Long time behavior of 2D micropolar fluid flows[J]. Mathematical and Computer Modelling, 2001, 34(5/6): 487-509.
    [6] ŁUKASZEWICZ G. Asymptotic behavior of micropolar fluid flows[J]. International Journal of Engineering Science, 2003, 41(3/4/5): 259-269.
    [7] DONG B Q, CHEN Z M. Global attractors of two-dimensional micropolar fluid flows in some unbounded domains[J]. Applied Mathematics and Computation, 2006, 182(1): 610-620. doi: 10.1016/j.amc.2006.04.024
    [8] ZHAO C, SUN W, HSU C H. Pullback dynamical behaviors of the non-autonomous micropolar fluid flows[J]. Dynamics of Partial Differential Equations, 2015, 12(3): 265-288. doi: 10.4310/DPDE.2015.v12.n3.a4
    [9] ZHAO C, ZHOU S, LIAN X. H1-uniform attractor and asymptotic smoothing effect of solutions for a nonautonomous micropolar fluid flow in 2D unbounded domains[J]. Nonlinear Analysis: Real World Applications, 2008, 9(2): 608-627. doi: 10.1016/j.nonrwa.2006.12.005
    [10] MANITIUS A. Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation[J]. IEEE Transactions on Automatic Control, 1984, 29(12): 1058-1068. doi: 10.1109/TAC.1984.1103436
    [11] 沈洋, 王企鲲, 刘唐京. 剪切稀化流变特性对微通道中颗粒迁移的影响[J]. 应用数学和力学, 2024, 45(5): 637-650. doi: 10.21656/1000-0887.440326

    SHEN Yang, WANG Qikun, LIU Tangjing. Effect of shear thinning rheological properties on particle migration in microchannels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 637-650. (in Chinese) doi: 10.21656/1000-0887.440326
    [12] SUN W. Micropolar fluid flows with delay on 2D unbounded domains[J]. Journal of Applied Analysis and Computation, 2018, 8: 356-378.
    [13] SUN W. The boundedness and uppersemicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay[J]. Electronic Research Archive, 2020, 28(3): 1343-1356. doi: 10.3934/era.2020071
    [14] SUN W, LIU G. Pullback attractor for the 2D micropolar fluid flows with delay on unbounded domains[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(5): 2807-2833. doi: 10.1007/s40840-018-0634-9
    [15] ZHAO C, SUN W. Global well-posedness and pullback attractors for a two-dimensional non-autonomous micropolar fluid flows with infinite delays[J]. Communications in Mathematical Sciences, 2017, 15(1): 97-121. doi: 10.4310/CMS.2017.v15.n1.a5
    [16] CARABALLO T, REAL J. Navier-stokes equations with delays[J]. Proceedings of the Royal Society of London (Series A): Mathematical, Physical and Engineering Sciences, 2001, 457(2014): 2441-2453. doi: 10.1098/rspa.2001.0807
    [17] ZHOU G, LIU G, SUN W. H2-boundedness of the pullback attractor of the micropolar fluid flows with infinite delays[J]. Boundary Value Problems, 2017, 2017: 133. doi: 10.1186/s13661-017-0866-x
    [18] CARABALLO T, HAN X. A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions[J]. Discrete & Continuous Dynamical Systems (Series S), 2015, 8(6): 1079-1101.
    [19] LIU L, CARABALLO T, MARÍN-RUBIO P. Stability results for 2D Navier-Stokes equations with unbounded delay[J]. Journal of Differential Equations, 2018, 265(11): 5685-5708. doi: 10.1016/j.jde.2018.07.008
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  24
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-04
  • 修回日期:  2025-03-10
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回