留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种蠕滑理论黏滑分界线的解析推导及其应用

程畅 王垚韡 晨旭 陈迪来

程畅, 王垚韡, 晨旭, 陈迪来. 两种蠕滑理论黏滑分界线的解析推导及其应用[J]. 应用数学和力学, 2025, 46(8): 1050-1063. doi: 10.21656/1000-0887.450317
引用本文: 程畅, 王垚韡, 晨旭, 陈迪来. 两种蠕滑理论黏滑分界线的解析推导及其应用[J]. 应用数学和力学, 2025, 46(8): 1050-1063. doi: 10.21656/1000-0887.450317
CHENG Chang, WANG Yaowei, LU Chenxu, CHEN Dilai. Derivations and Applications of Stick-Slip Boundaries for 2 Creep Theories[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1050-1063. doi: 10.21656/1000-0887.450317
Citation: CHENG Chang, WANG Yaowei, LU Chenxu, CHEN Dilai. Derivations and Applications of Stick-Slip Boundaries for 2 Creep Theories[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1050-1063. doi: 10.21656/1000-0887.450317

两种蠕滑理论黏滑分界线的解析推导及其应用

doi: 10.21656/1000-0887.450317
基金项目: 

上海科技创新行动计划(21210750300);上海启明星计划(22YF1447600)

详细信息
    作者简介:

    程畅(1970—),男,教授(E-mail: chengnahc@163.com);陆晨旭(1994—),男,讲师,博士(通讯作者. E-mail: 18810327668@163.com).

    通讯作者:

    陆晨旭(1994—),男,讲师,博士(通讯作者. E-mail: 18810327668@163.com).

  • 中图分类号: TH212|TH213.3

Derivations and Applications of Stick-Slip Boundaries for 2 Creep Theories

  • 摘要: 解析模型可以更好地理解蠕滑、自旋对黏滑区分布的影响,并快速确定接触斑黏滑分布.为此,推导了Kalker简化理论和Polach理论的黏滑边界线解析表达式,并将其应用于轮轨磨耗计算.计算结果表明:蠕滑率及接触斑长短轴比值较小时,两种理论得到的黏滑分区及应力分布一致性较好,随着蠕滑率和长短轴比值增加,结果逐渐出现差异.轨面湿滑状态下,滑动区比例会明显增加,但是磨耗速率降低了20%~30%;制动等级对磨耗速率有显著影响,与常用制动相比,紧急制动使得磨耗大幅增加;列车速度提高使得轮轨滑动速度增加,加剧了磨耗速率.
  • [2]程亚平, 李志刚, 张强. 钢绞线丝间变形与感应加热效果数学模型的研究[J]. 应用数学和力学, 2016,37(9): 915-923. (CHENG Yaping, LI Zhigang, ZHANG Qiang. Mathematical models for deformation between steel strand wires and induction heating effects[J].Applied Mathematics and Mechanics,2016,37(9): 915-923. (in Chinese))
    HERTZ H. Uber die berührung fester elastischer korper[J].Journal für Die Reine und Angewandte Mathematik,1882,92: 156-171.
    [3]CARTER F W. On the action of a locomotive driving wheel[J].Proceedings of the Royal Society of London,1926,112(760): 151-157.
    [4]VERMEULEN P J, JOHNSON K L. Contact of nonspherical elastic bodies transmitting tangential forces[J].Journal of Applied Mechanics,1964,31(2): 338-340.
    [5]KALKER J J. On the rolling contact of two elastic bodies in the presence of dry friction[R]. 1967.
    [6]KALKER J J. The computation of three-dimensional rolling contact with dry friction[J].International Journal for Numerical Methods in Engineering,1979,14(9): 1293-1307.
    [7]KALKER J J. A fast algorithm for the simplified theory of rolling contact[J].Vehicle System Dynamics,1982,11(1): 1-13.
    [8]SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis [J].Vehicle System Dynamics,1983,12(1/3): 79-83.
    [9]POLACH O. A fast wheel-rail forces calculation computer code[J].Vehicle System Dynamics,1999,33: 728-739.
    [10]罗仁, 曾京, 戴焕云, 等. 高速列车车轮磨耗预测仿真[J]. 摩擦学学报, 2009,29(6): 551-558. (LUO Ren, ZENG Jing, DAI Huanyun, et al. Simulation on wheel wear prediction of high-speed train[J].Tribology,2009,29(6): 551-558. (in Chinese))
    [11]丁军君, 李芾, 黄运华. 基于蠕滑机理的车轮磨耗模型分析[J]. 中国铁道科学, 2010,31(5): 66-72. (DING Junjun, LI Fu, HUANG Yunhua. Analysis of the wheel wear model based on the creep mechanism[J].China Railway Science,2010,31(5): 66-72. (in Chinese))
    [12]朱文良, 郑树彬, 吴娜, 等. 适用于制动工况下的轮轨低黏着改进模型[J]. 铁道学报, 2021,43(3): 34-41. (ZHU Wenliang, ZHENG Shubin, WU Na, et al. Improved model for degraded wheel-rail adhesion under braking conditions[J].Journal of the China Railway Society,2021,43(3): 34-41. (in Chinese))
    [13]安博洋, 王平, 徐义新, 等. 基于POLACH方法的轮轨蠕滑曲线研究[J]. 机械工程学报, 2018,54(4): 124-131. (AN Boyang, WANG Ping, XU Yixin, et al. Study on wheel/rail creep curve based on POLACH’s method[J].Journal of Mechanical Engineering,2018,54(4): 124-131. (in Chinese))
    [14]王平, 宋娟, 杨春凯, 等. 实测轮轨蠕滑曲线对钢轨磨耗影响分析[J]. 西南交通大学学报, 2024,59(5): 1034-1042. (WANG Ping, SONG Juan, YANG Chunkai, et al. Effect of measured wheel-rail creep curves on rail wear[J].Journal of Southwest Jiaotong University,2024,59(5): 1034-1042. (in Chinese))
    [15]宋娟, 王平, 陈雨, 等. 实测轮轨蠕滑曲线对车辆-轨道动态相互作用的影响分析[J]. 铁道标准设计, 2023,67(6): 45-52. (SONG Juan, WANG Ping, CHEN Yu, et al. Influence of measured wheel-rail creep curves on vehicle-track dynamic interaction[J].Railway Standard Design,2023,67(6): 45-52. (in Chinese))
    [16]陈爽, 陈雨, 潘自立, 等. 基于FASTSIM和TRIAL算法的轮轨切向接触模型研究[J]. 高速铁路技术, 2023,14(6): 62-67. (CHEN Shuang, CHEN Yu, PAN Zili, et al. A study on tangential wheel-rail contact model based on FASTSIM and TRIAL algorithms[J].High Speed Railway Technology,2023,14(6): 62-67. (in Chinese))
    [17]YANG Y, DING J T, LI F, et al. Longitudinal vibration of a resilient wheel under the adhesion limit [J].Proceedings of the Institution of Mechanical Engineers (Part F): Journal of Rail and Rapid Transit,2019,233(4): 370-381.
    [18]鲁昌霖, 王志伟, 王权, 等. 考虑轮轨蠕滑的高速列车制动非线性振动行为研究[J]. 重庆理工大学学报(自然科学), 2023,37(6): 10-19. (LU Changlin, WANG Zhiwei, WANG Quan, et al. Research on nonlinear braking vibration of high-speed trains considering wheel-rail creep[J].Journal of Chongqing University of Technology (Natural Science), 2023,37(6): 10-19. (in Chinese))
    [19]ZIREK A, VOLTR P, LATA M, et al. An adaptive sliding mode control to stabilize wheel slip and improve traction performance[J].Proceedings of the Institution of Mechanical Engineers (Part F): Journal of Rail and Rapid Transit,2018,232(10): 2392-2405.
    [20]QI Y, DAI H. Influence of motor harmonic torque on wheel wear in high-speed trains[J].Proceedings of the Institution of Mechanical Engineers (Part F): Journal of Rail and Rapid Transit,2020,234(1): 32-42.
    [21]王志强, 雷震宇. 谐波型波磨激扰下轮轨系统接触蠕滑特性[J]. 计算力学学报, 2020,37(6): 735-742. (WANG Zhiqiang, LEI Zhenyu. Contact and creep characteristics of wheelrail system under harmonic corrugation excitation[J].Chinese Journal of Computational Mechanics,2020,37(6): 735-742. ( in Chinese))
    [22]李可, 刘学文, 张经纬, 等. 低阶谐波磨耗轮对引起的轮轨及等效人体动态响应分析[J]. 计算力学学报, 2020,37(1): 42-47. (LI Ke, LIU Xuewen, ZHANG Jingwei, et al. Analysis of wheel-rail and equivalent human dynamic response due to low-order harmonic wear wheel-sets[J].Chinese Journal of Computational Mechanics,2020,37(1): 42-47. (in Chinese))
    [23]XIAO G W, WU B, YAO L Q, et al. The traction behaviour of high-speed train under low adhesion condition[J].Engineering Failure Analysis,2022,131: 105858.
    [24]LU C X, CHEN D L, SHI J, et al. Research on wheel-rail dynamic interaction of high-speed railway under low adhesion condition[J].Engineering Failure Analysis,2024,157: 107935.
    [25]JENDEL T. Prediction of wheel profile wear: comparisons with field measurements[J].Wear,2002,253(1/2): 89-99.
  • 加载中
计量
  • 文章访问数:  14
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-20
  • 修回日期:  2025-03-24
  • 网络出版日期:  2025-09-10

目录

    /

    返回文章
    返回