• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁微极流方程组紧的拉回吸收集的存在性

田从洋 孙文龙

田从洋, 孙文龙. 磁微极流方程组紧的拉回吸收集的存在性[J]. 应用数学和力学, 2025, 46(11): 1491-1500. doi: 10.21656/1000-0887.450334
引用本文: 田从洋, 孙文龙. 磁微极流方程组紧的拉回吸收集的存在性[J]. 应用数学和力学, 2025, 46(11): 1491-1500. doi: 10.21656/1000-0887.450334
TIAN Congyang, SUN Wenlong. Existence of the Compact Pullback Absorbing Family for Magneto-Micropolar Fluid Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1491-1500. doi: 10.21656/1000-0887.450334
Citation: TIAN Congyang, SUN Wenlong. Existence of the Compact Pullback Absorbing Family for Magneto-Micropolar Fluid Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1491-1500. doi: 10.21656/1000-0887.450334

磁微极流方程组紧的拉回吸收集的存在性

doi: 10.21656/1000-0887.450334
基金项目: 

国家自然科学基金(12301294);湖北省自然科学基金(2022CFB661);湖北省教育厅科学研究计划青年人才基金项目(Q20231309)

详细信息
    作者简介:

    田从洋(1999—),男,硕士(E-mail: yangtze24@126.com);孙文龙(1988—),男,副教授,博士(通讯作者. E-mail: wenlongsun1988@163.com).

    通讯作者:

    孙文龙(1988—),男,副教授,博士(通讯作者. E-mail: wenlongsun1988@163.com).

  • 中图分类号: O175.29

Existence of the Compact Pullback Absorbing Family for Magneto-Micropolar Fluid Equations

Funds: 

The National Science Foundation of China(12301294)

  • 摘要: 在二维有界区域上研究了磁微极流方程组的拉回动力学行为.运用半群方法和ε-正则性方法,结合Sobolev空间嵌入理论,在不同条件下,分别证明了空间H和空间V中紧的拉回吸收集的存在性.
  • GALDI G P, RIONERO S. A note on the existence and uniqueness of solutions of the micropolar fluid equations[J].International Journal of Engineering Science,1977,15(2): 105-108.
    [2]COWIN S C. Polar fluids[J].The Physics of Fluids,1968,11(9): 1919-1927.
    [3]ERINGEN A. Theory of micropolar fluids[J].Indiana University Mathematics Journal,1966,16(1): 16001.
    [4]UKASZEWICZ G.Micropolar Fluids: Theory and Applications[M]. Boston: Birkhuser, 1999.
    [5]JIA C M, TAN Z, ZHOU J F. Global well-posedness of compressible magneto-micropolar fluid equations[J].The Journal of Geometric Analysis,2023,33: 358.
    [6]ROJAS-MEDAR M A. Magneto-micropolar fluid motion: existence and uniqueness of strong solution[J].Mathematische Nachrichten,1997,188(1): 301-319.
    [7]ROJAS MEDAR M A, BOLDRINI J L. Magneto-micropolar fluid motion: existence of weak solutions[J].Revista Matemática Complutense,1998,11(2): 443-460.
    [8]UKASZEWICZ G, SADOWSKI W. Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains[J].Zeitschrift für Angewandte Mathematik und Physik ZAMP,2004,55(2): 247-257.
    [9]MATSUURA K. Exponential attractors for 2D magneto-micropolor fluid flow in bounded domain[J].Discrete and Continuous Dynamical Systems,2005, 2〖STHZ〗005: 634-641.
    [10]YANG H J, HAN X L, WANG X, et al. Homogenization of trajectory statistical solutions for the 3D incompressible magneto-micropolar fluids[J].Discrete and Continuous Dynamical Systems: S,2023,16(10): 2672-2685.
    [11]NICHE C J, PERUSATO C F. Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids[J].Zeitschrift für Angewandte Mathematik und Physik,2022,73: 48.
    [12]TAN Z, WU W, ZHOU J. Global existence and decay estimate of solutions to magneto-micropolar fluid equations[J].Journal of Differential Equations,2019,266(7): 4137-4169.
    [13]ZHAO C, LI Y,UKASZEWICZ G. Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids[J]. Zeitschrift für Angewandte Mathematik und Physik,2020,71(4): 141.
    [14]LI Y, LI X. Equivalence between invariant measures and statistical solutions for the 2D non-autonomous magneto-micropolar fluid equations[J].Mathematical Methods in the Applied Sciences,2022,45(5): 2638-2657.
    [15]田琴, 向长林, 别群益. 三维稳态磁流体动力学方程的Liouville定理[J]. 应用数学和力学, 2023,44(10): 1250-1259. (TIAN Qin, XIANG Changlin, BIE Qunyi. On the Liouville theorems for 3D stationary magnetohydrodynamic equations[J].Applied Mathematics and Mechanics,2023,44(10): 1250-1259.(in Chinese))
    [16]FOIAS C, MANLEY O, ROSA R, et al.Navier-Stokes Equations and Turbulence[M]. Cambridge: Cambridge University Press, 2001.
    [17]SUN W. The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay[J].Electronic Research Archive,2020,28(3): 1343-1356.
    [18]ARRIETA J M, CARVALHO A N. Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations[J].Transactions of the American Mathematical Society,2000,352(1): 285-310.
    [19]FUJITA H, KATO T. On the Navier-Stokes initial value problem I[J].Archive for Rational Mechanics and Analysis,1964,26: 269-315.
    [20]SUN W, LI Y. Pullback dynamical behaviors of the non-autonomous micropolar fluid flows with minimally regular force and moment[J].Communications in Mathematical Sciences,2018,16(4): 1043-1065.
    [21]TEMAM R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York: Springer-Verlag, 2012.
    [22]GARCA-LUENGO J, MARN-RUBIO P, REAL J, et al. Pullback attractors for the non-autonomous 2D Navier-Stokes equations for minimally regular forcing[J].Discrete & Continuous Dynamical Systems: A,2014,34(1): 203-227.
  • 加载中
计量
  • 文章访问数:  12
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-18
  • 修回日期:  2025-01-21
  • 网络出版日期:  2025-12-05

目录

    /

    返回文章
    返回