留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两非线性波方程真圈解的存在性和破缺性质

李继彬

李继彬. 两非线性波方程真圈解的存在性和破缺性质[J]. 应用数学和力学, 2009, 30(5): 505-514. doi: 10.3879/j.issn.1000-0887.2009.05.001
引用本文: 李继彬. 两非线性波方程真圈解的存在性和破缺性质[J]. 应用数学和力学, 2009, 30(5): 505-514. doi: 10.3879/j.issn.1000-0887.2009.05.001
LI Ji-bin. Existence and Breaking Property of Real Loop-Solutions of Two Nonlinear Wave Equations[J]. Applied Mathematics and Mechanics, 2009, 30(5): 505-514. doi: 10.3879/j.issn.1000-0887.2009.05.001
Citation: LI Ji-bin. Existence and Breaking Property of Real Loop-Solutions of Two Nonlinear Wave Equations[J]. Applied Mathematics and Mechanics, 2009, 30(5): 505-514. doi: 10.3879/j.issn.1000-0887.2009.05.001

两非线性波方程真圈解的存在性和破缺性质

doi: 10.3879/j.issn.1000-0887.2009.05.001
基金项目: 国家自然科学基金资助项目(10671179,10831003)
详细信息
    作者简介:

    李继彬(1943- ),男,云南人,教授,博士生导师(Tel:+86-871-5171274;E-mail:jibinli@gmail.com).

  • 中图分类号: O357.1

Existence and Breaking Property of Real Loop-Solutions of Two Nonlinear Wave Equations

  • 摘要: 对于某些非线性波方程,动力系统方法的分析说明所谓的圈孤子解和反圈孤子解实际上是人为的现象.所谓的圈孤子解由3个解合成,不是1个真解.是否存在非线性波方程,使得该方程的行波系统存在真正的1个圈解? 若这样的解存在,它们有怎样的精确参数表示?该文回答这些问题.
  • [1] Konno K, Ichikawa Y-H,Wadati M. A loop soliton propagating along a stretched rope[J]. J Phys Soc Japan,1981,50(3):1025-1026. doi: 10.1143/JPSJ.50.1025
    [2] Stepanyants Y A. On stationary solutions of the reduced Ostrovsky equation:periodic wave, compactions and compound solitons[J].Chaos, Solitons & Fractals,2006,28(1):193-204.
    [3] Parkes E J. Explicit solutions of the reduced Ostrovsky equation[J].Chaos, Solitons & Fractals,2007,31(3):602-610.
    [4] Parkes E J. Some periodic and solitary traveling-wave solutions of the short-pulse equation[J].Chaos, Solitons & Fractals,2008,38(1):154-159.
    [5] Parkes E J. Periodic and solitary traveling-wave solutions of an extended reduced Ostrovsky equation[J].Symmetry, Integrability and Geometry:Method and Applications, 2008,4(053):1-17.
    [6] LI Ji-bin. Dynamical understanding of loop soliton solutions for several nonlinear wave equations[J].Science in China, Series A:Math,2007,50(6):773-785. doi: 10.1007/s11425-007-0039-y
    [7] Sakovich A, Sakovich S. Solitary wave solutions of the short pulse equation[J].J Phys A Math Gen, 2006,39(22):L361-L367.
    [8] Schafer T, Wayne C E. Propagation of ultra-short optical pulses in cubic nonlinear media[J].Physica D, 2004,196(1/2):90-105. doi: 10.1016/j.physd.2004.04.007
    [9] Morrison A J, Parkes E J, Vakhnenko V O. The N-loop soliton solution of the Vakhnenko equation[J].Nonlinearity, 1999,12(5):1427-1437. doi: 10.1088/0951-7715/12/5/314
    [10] Morrison A J, Parkes E J. The N-loop soliton of the modified generalized Vakhnenko equation (a new nonlinear evolution equation)[J].Chaos, Solitons & Fractals,2003,16(1):13-26.
    [11] Vakhnenko V O, Parkes E J. The two loop soliton solution of the Vakhnenko equation[J]. Nonlinearity,1998,11(6):1457-1464. doi: 10.1088/0951-7715/11/6/001
    [12] Vakhnenko V O. High-frequency soliton-like waves in a relaxing medium[J].J Math Phys,1999,40(4):2011-2020. doi: 10.1063/1.532847
  • 加载中
计量
  • 文章访问数:  1446
  • HTML全文浏览量:  128
  • PDF下载量:  812
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-08-06
  • 修回日期:  2009-03-20
  • 刊出日期:  2009-05-15

目录

    /

    返回文章
    返回