留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微极性多组分多孔介质材料的混合物理论

黄璐 赵成刚

黄璐, 赵成刚. 微极性多组分多孔介质材料的混合物理论[J]. 应用数学和力学, 2009, 30(5): 575-586. doi: 10.3879/j.issn.1000-0887.2009.05.008
引用本文: 黄璐, 赵成刚. 微极性多组分多孔介质材料的混合物理论[J]. 应用数学和力学, 2009, 30(5): 575-586. doi: 10.3879/j.issn.1000-0887.2009.05.008
HUANG Lu, ZHAO Cheng-gang. Micropolar Mixture Theory of Multicomponent Porous Media[J]. Applied Mathematics and Mechanics, 2009, 30(5): 575-586. doi: 10.3879/j.issn.1000-0887.2009.05.008
Citation: HUANG Lu, ZHAO Cheng-gang. Micropolar Mixture Theory of Multicomponent Porous Media[J]. Applied Mathematics and Mechanics, 2009, 30(5): 575-586. doi: 10.3879/j.issn.1000-0887.2009.05.008

微极性多组分多孔介质材料的混合物理论

doi: 10.3879/j.issn.1000-0887.2009.05.008
基金项目: 国家自然科学基金资助项目(50778013);北京市自然科学基金资助项目(8082020)
详细信息
    作者简介:

    黄璐(1982- ),女,四川人,博士生(联系人.E-mail:huanglu600@163.com).

  • 中图分类号: O33

Micropolar Mixture Theory of Multicomponent Porous Media

  • 摘要: 将描述多组分系统的复合混合物理论与微极性连续介质力学理论相结合,建立了描述微极性多组分多孔介质材料的混合物理论.假定系统由多组分的微极性弹性固体和多组分微极性粘性流体组成.给出由混合物理论建立的系统的平衡方程.依据热力学第二定律以及本构假设建立了系统的本构方程,并使场方程闭合.为考虑固相的压缩性,在液相自由能函数中引入液相体积分数作为内变量,得到动力相容条件, 用以限制固、 液两相界面压力差的变化.最后,基于线性化理论得到线性化的本构方程和场方程,建立了考虑介质微极性的热-水力-力学组分输运模型.此理论框架可以运用到可变形多孔介质中污染物、药物以及农药输运等问题中.所得到的微极性多组分多孔介质系统的闭合场方程经退化后,可变为固、流相都为单一组分的多孔介质系统场方程,它与Eringen得到的结果一致.
  • [1] Bowen R M.Incompressible porous media models by use of the theory of mixtures[J].Int J Eng Sci,1980,18(9):1129-1148. doi: 10.1016/0020-7225(80)90114-7
    [2] Bowen R M.Compressible porous media models by use of the theory of mixtures[J].Int J Eng Sci,1982,20(6):697-735. doi: 10.1016/0020-7225(82)90082-9
    [3] 陈正汉,谢定义,刘祖典.非饱和土固结的混合物理论(Ⅰ) [J].应用数学和力学,1993,14(2):127-137.
    [4] Wei C F,Muraleetharan K K.A continuum theory of porous media saturated by multiple immiscible fluids:Ⅰ.Linear poroelasticity[J].Int J Eng Sci,2002,40(16):1807-1833. doi: 10.1016/S0020-7225(02)00068-X
    [5] WEI Chang-fu.Static and dynamic behavior of multiphase porous media:governing equations and finite element implementation[D].Norman,Oklahoma:University of Oklahoma,2001.
    [6] Li X S.Thermodynamics-based constitutive framework for unsaturated soils.1:theory[J].Géotechnique,2007,57(5):411-422. doi: 10.1680/geot.2007.57.5.411
    [7] Li X S.Thermodynamics-based constitutive framework for unsaturated soils—2:a basic triaxial model[J].Géotechnique,2007,57(5):423-435. doi: 10.1680/geot.2007.57.5.423
    [8] Hassanizadeh S M.Derivation of basic equations of mass transport in porous media,part 2:generalized Darcy's and Fick's law[J].Adv Water Res,1986,9(4):207-222. doi: 10.1016/0309-1708(86)90025-4
    [9] Achanta S,Cushman J H.On multicomponent,multiphase thermomechanics with interfaces[J].Int J Eng Sci,1994,32(11):1717-1738. doi: 10.1016/0020-7225(94)90104-X
    [10] Murad M A,Cushman J H.Multiscale flow and deformation in hydrophilic swelling porous media[J].Int J Eng Sci,1996,34(3):313-338. doi: 10.1016/0020-7225(95)00057-7
    [11] Murad M A,Cushman J H.Thermomechanical model of hydration swelling in smectitic clays[KG*5]. —Ⅰ:two-scale mixture-theory approach[J].Int J Numer Anal Methods Geomech,1999,23(7):673-696.
    [12] Bennethum L S,Cushman J H.Multiscal,hybrid mixture theory for swelling systems[KG*5]. —Ⅰ:balance laws[J].Int J Eng Sci,1996,34(2):125-145.
    [13] Bennethum L S,Cushman J H.Multiscal,hybrid mixture theory for swelling systems[KG*5]. —Ⅱ:constitutive theory[J].Int J Eng Sci,1996,34(2):147-169.
    [14] Bennethum L S,Cushman J H.Clarifying mixture theory and the macroscale chemical potential for porous media[J].Int J Eng Sci,1996,34(14):1611-1621. doi: 10.1016/S0020-7225(96)00042-0
    [15] Bennethum L S,Murad M A,Cushman J H.Macroscale thermodynamics and the chemical potential for swelling porous media[J].Transport in Porous Media,2000,39(2):187-225. doi: 10.1023/A:1006661330427
    [16] Bennethum L S,Murad M A,Cushman J H.Modified Darcy's law,Terzaghi's effective stress principle and Fick's law for swelling clay soils[J].Computers and Geotechnics,1997,20(3/4):245-266. doi: 10.1016/S0266-352X(97)00005-0
    [17] Bennethum L S,Cushman J H.Coupled solvent and heat transport of mixture of swelling porous particles and fluids:Single time-scale problem[J].Transport in Porous Media,1999,36(2):211-244. doi: 10.1023/A:1006534302277
    [18] Singh P P,Cushman J H,Maier D F.Themomechanics of swelling biopolymeric systerms[J].Transport in Porous Media,2003,53(1):1-24. doi: 10.1023/A:1023515101436
    [19] Singh P P.Cushman J H,Maier D E.Multiscale fluid transport theory for swelling biopolymers[J].Chemical Eng Sci,2003,58(11):2409-2419. doi: 10.1016/S0009-2509(03)00084-8
    [20] Singh P P,Cushman J H,Maier D E.Three scale thermomechanical theory for swelling biopolymeric systems[J].Chemical Eng Sci,2003,58(17):4017-4035. doi: 10.1016/S0009-2509(03)00283-5
    [21] Eringen A C.Micropolar mixture theory of porous media[J].J Appl Phys,2003,94(6):4184-4190. doi: 10.1063/1.1598640
    [22] Eringen A C.Microcontinuum Field Theories[M].New York:Springer-Verlag,1998.
    [23] 爱林根A C,卡法达C B.微极场论[M].戴天民 译.南京:江苏科学技术出版社,1982.
    [24] Nowacki W.Theory of Asymmetric Elasticity [M] .Oxford :Pergamon Press,1986.
    [25] 戴天民.微极连续统的耦合场理论的再研究(Ⅰ)——微极热弹性理论[J].应用数学和力学,2002,23(2):111-118.
    [26] 戴天民.微极连续统的耦合场理论的再研究(Ⅱ)——微极热压电弹性理论和电磁热弹性理论[J].应用数学和力学,2002,23(3):229-238.
    [27] Diebels S.A micropolar theory of porous media:constitutive modelling[J].Transport in Porous Meida,1999,34(1/3):193-208. doi: 10.1023/A:1006517625933
    [28] Hutter K,Jhnk K.Continuum Methods of Physical Modeling[M].Heidelberg:Springer-Verlag,2004.
    [29] Passman S T.A theory of multiphase mixtures[A].In:Trusdell C,Ed.Rational Thermodynamics[C].New York:Springer-Verlag,1984,286-325.
    [30] Wilmanski K.Lagrangean model of two-phase porous material[J].J Non-Equilibrium Thermodynamics,1995,20(1):50-77.
  • 加载中
计量
  • 文章访问数:  1675
  • HTML全文浏览量:  158
  • PDF下载量:  988
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-09-11
  • 修回日期:  2009-04-07
  • 刊出日期:  2009-05-15

目录

    /

    返回文章
    返回