留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双参数半线性反应扩散方程的奇摄动解

莫嘉琪 刘树德

莫嘉琪, 刘树德. 双参数半线性反应扩散方程的奇摄动解[J]. 应用数学和力学, 2009, 30(5): 607-612. doi: 10.3879/j.issn.1000-0887.2009.05.011
引用本文: 莫嘉琪, 刘树德. 双参数半线性反应扩散方程的奇摄动解[J]. 应用数学和力学, 2009, 30(5): 607-612. doi: 10.3879/j.issn.1000-0887.2009.05.011
MO Jia-qi, LIU Shu-de. Singularly Perturbed Solution for Semilinear Reaction Diffusion Equations With Two Parameters[J]. Applied Mathematics and Mechanics, 2009, 30(5): 607-612. doi: 10.3879/j.issn.1000-0887.2009.05.011
Citation: MO Jia-qi, LIU Shu-de. Singularly Perturbed Solution for Semilinear Reaction Diffusion Equations With Two Parameters[J]. Applied Mathematics and Mechanics, 2009, 30(5): 607-612. doi: 10.3879/j.issn.1000-0887.2009.05.011

双参数半线性反应扩散方程的奇摄动解

doi: 10.3879/j.issn.1000-0887.2009.05.011
基金项目: 国家自然科学基金资助项目(40676016;40876010);中国科学院知识创新工程重要方向资助项目(KZCX2-YW-Q03-08);上海市教育委员会E-研究院建设计划资助项目(E03004)
详细信息
    作者简介:

    莫嘉琪(1937- ),男,浙江德清人,教授(联系人.Tel:+86-553-3869642;E-mail:mojiaqi@mail.ahnu.edu.cn).

  • 中图分类号: O175.29

Singularly Perturbed Solution for Semilinear Reaction Diffusion Equations With Two Parameters

  • 摘要: 讨论了一类具有双参数的半线性反应扩散方程奇摄动初始边值问题.利用微分不等式理论,研究了初始边值问题解的渐近性态.
  • [1] de Jager E M,JIANG Fu-ru.The Theory of Singular Perturbation[M].Amsterdam:North-Holland Publishing Co,1996.
    [2] NI Wei-ming,WEI Jun-cheng.On positive solution concentrating on spheres for the Gierer-Meinhardt system[J].J Differential Equations,2006,221(1):158-189. doi: 10.1016/j.jde.2005.03.004
    [3] Zhang F.Coexistence of a pulse and multiple spikes and transition layers in the standing waves of a reaction-diffusion system[J].J Differential Equations,2004,205(1):77-155. doi: 10.1016/j.jde.2004.06.017
    [4] Khasminskii R Z,Yin G.Limit behavior of two-time-scale diffusion revisited[J].J Differential Equations,2005,212(1):85-113. doi: 10.1016/j.jde.2004.08.013
    [5] Marques I.Existence and asymptotic behavior of solutions for a class of nonlinear elliptic equations with Neumann condition[J].Nonlinear Anal,2005,61(1):21-40. doi: 10.1016/j.na.2004.11.006
    [6] Bobkova A S.The behavior of solutions of multidimensional singularly perturbed system with one fast variable[J].J Differential Equations,2005,41(1):23-32.
    [7] MO Jia-qi.A singularly perturbed nonlinear boundary value problem[J].J Math Anal Appl,1993,178(1):289-293. doi: 10.1006/jmaa.1993.1307
    [8] MO Jia-qi.Singular perturbation for a class of nonlinear reaction diffusion systems[J].Science in China,Ser A,1989,32(11):1306-1315.
    [9] MO Jia-qi,LIN Wan-tao.A nonlinear singular perturbed problem for reaction diffusion equations with boundary perturbation[J].Acta Math Appl Sinica,2005,21(1):101-104. doi: 10.1007/s10255-005-0220-4
    [10] MO Jia-qi,LIN Wan-tao.Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J].J Sys Sci & Complexity,2008,20(1):119-128.
    [11] MO Jia-qi,Shao S.The singularly perturbed boundary value problems for higher-order semilinear elliptic equations[J].Advances in Math,2001,30(2):141-148.
    [12] MO Jia-qi,WANG Hui.Nonlinear singularly perturbed approximate solution for generalized Lotke-Volterra ecological model[J].Acta Ecologica Sinica,2007,27(10):4366-4370.
    [13] MO Jia-qi,ZHU Jiang,WANG Hui.Asymptotic behavior of the shock solution for a class of nonlinear equations[J].Prog Nat Sci,2003,13(9):768-770. doi: 10.1080/10020070312331344400
    [14] MO Jia-qi,HAN Xiang-lin.Asymptotic shock solution for a nonlinear equation[J].Acta Math Sci,2004,24(2):164-167.
    [15] MO Jia-qi,LIN Wan-tao,WANG Hui.Variational iteration solving method of a sea-air oscillator model for the ENSO[J].Prog Nat Sci,2007,17(2):230-232. doi: 10.1080/10020070612331343252
    [16] MO Jia-qi,LIN Wan-tao,WANG Hui.Variational iteration method for solving perturbed mechanism of western boundary undercurrents in the Pacific[J].Chin Phys,2007,16(4):951-964. doi: 10.1088/1009-1963/16/4/016
    [17] MO Ji-aqi,LIN Wan-tao.Asymptotic solution for a class of sea-air oscillator model for El-Nino-southern oscillation[J].Chin Phys,2008,17(2):370-372. doi: 10.1088/1674-1056/17/2/002
    [18] MO Jia-qi,LIN Wan-tao,WANG Hui.Singularly perturbed solution of coupled model in atmosphere-ocean for global climate[J].Chin Geographical Sci,2008,18(2):193-195. doi: 10.1007/s11769-008-0193-3
  • 加载中
计量
  • 文章访问数:  1777
  • HTML全文浏览量:  195
  • PDF下载量:  994
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-16
  • 修回日期:  2009-03-25
  • 刊出日期:  2009-05-15

目录

    /

    返回文章
    返回