An SQP Algorithm for Mathematical Programs With Nonlinear Complementarity Constraints
-
摘要: 提出了一个求解非线性互补约束均衡问题(MPCC)的逐步逼近光滑SQP算法.通过一系列光滑优化来逼近MPCC.引入l1精确罚函数,线搜索保证算法具有全局收敛性.进而,在严格互补及二阶充分条件下,算法是超线性收敛的.此外,当算法有限步终止,当前迭代点即为MPEC的一个精确稳定点.Abstract: A successive approximation and smooth SQP method for mathematical programs with nonlinear complementarity constraints (MPCC) is described. A class of smooth programs to approximate the MPCC was introduced. Using an l1 penalty function, the line search assures the global convergence, while superlinear convergence rate is shown under strictly complementary conditions and the second order sufficient condition. Moreover, it was proved that the current iterated point is an exact stationary point of the MPEC when the algorithm terminates finitely.
-
Key words:
- MPEC /
- SQP algorithm /
- successive approximation /
- global convergence /
- superlinear convergence rate
-
[1] Outrate J V, Kocvare M, Zowe J.Nonsmooth Approach to Optimization Problems With Equilibrium Consrtaints[M].The Netherlands: Kluwer Academic Publishers,1998. [2] Jiang H, Ralph D. Smooth SQP method for mathematical programs with nonlinear complementarity constraints[J].SIAM J Optimization,2000,10(3):779-808. doi: 10.1137/S1052623497332329 [3] Fukushima M, Luo Z Q, Pang J S. A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints[J].Comp Opti Appl,1998,10(1):5-34. doi: 10.1023/A:1018359900133 [4] Ma C F, Liang G P. A new successive approximation damped Newton method for nonlinear complementarity problems[J].Journal of Mathematical Research and Exposition,2003,23(1):1-6. [5] 朱志斌,罗志军,曾吉文. 互补约束均衡问题一个新的磨光技术[J].应用数学和力学,2007,28(10): 1253-1260. [6] Fukushima M, Pang J S. Some feasibility issues in mathematical programs with equilibrium constraints[J].SIAM J Optimization,1998,8(3): 673-681. doi: 10.1137/S105262349731577X [7] Panier E R, Tits A L. On combining feasibility, descent and superlinear convergence in inequality constrained optimization[J].Mathematical Programming,1993,59(1): 261-276. doi: 10.1007/BF01581247 [8] Zhu Z B, Zhang K C. A superlinearly convergent SQP algorithm for mathematical programs with linear complementarity constraints[J].Applied Mathematics and Computation,2006,172(1): 222-244. doi: 10.1016/j.amc.2005.01.141 [9] Panier E R, Tits A L. A superlinearly convergent feasible method for the solution of inequality constrained optimization problems[J].SIAM J Control Optim,1987,25(3): 934-950. doi: 10.1137/0325051 [10] Facchinei F,Lucidi S. Quadraticly and superlinearly convergent for the solution of inequality constrained optimization problem[J].J Optim Theory Appl,1995,85(2): 265-289. doi: 10.1007/BF02192227
计量
- 文章访问数: 1548
- HTML全文浏览量: 155
- PDF下载量: 1054
- 被引次数: 0