留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性互补约束均衡问题的一个SQP算法

朱志斌 简金宝 张聪

朱志斌, 简金宝, 张聪. 非线性互补约束均衡问题的一个SQP算法[J]. 应用数学和力学, 2009, 30(5): 613-622. doi: 10.3879/j.issn.1000-0887.2009.05.012
引用本文: 朱志斌, 简金宝, 张聪. 非线性互补约束均衡问题的一个SQP算法[J]. 应用数学和力学, 2009, 30(5): 613-622. doi: 10.3879/j.issn.1000-0887.2009.05.012
ZHU Zhi-bin, JIAN Jin-bao, ZHANG Cong. An SQP Algorithm for Mathematical Programs With Nonlinear Complementarity Constraints[J]. Applied Mathematics and Mechanics, 2009, 30(5): 613-622. doi: 10.3879/j.issn.1000-0887.2009.05.012
Citation: ZHU Zhi-bin, JIAN Jin-bao, ZHANG Cong. An SQP Algorithm for Mathematical Programs With Nonlinear Complementarity Constraints[J]. Applied Mathematics and Mechanics, 2009, 30(5): 613-622. doi: 10.3879/j.issn.1000-0887.2009.05.012

非线性互补约束均衡问题的一个SQP算法

doi: 10.3879/j.issn.1000-0887.2009.05.012
基金项目: 国家自然科学基金资助项目(10501009;10771040);广西壮族自治区自然科学基金资助项目(0728206;0640001);中国博士后基金资助项目(20070410228)
详细信息
    作者简介:

    朱志斌(1974- ),男,湖南双峰人,教授,博士(联系人.E-mail:zhuzbma@hotmail.com).

  • 中图分类号: O221.2

An SQP Algorithm for Mathematical Programs With Nonlinear Complementarity Constraints

  • 摘要: 提出了一个求解非线性互补约束均衡问题(MPCC)的逐步逼近光滑SQP算法.通过一系列光滑优化来逼近MPCC.引入l1精确罚函数,线搜索保证算法具有全局收敛性.进而,在严格互补及二阶充分条件下,算法是超线性收敛的.此外,当算法有限步终止,当前迭代点即为MPEC的一个精确稳定点.
  • [1] Outrate J V, Kocvare M, Zowe J.Nonsmooth Approach to Optimization Problems With Equilibrium Consrtaints[M].The Netherlands: Kluwer Academic Publishers,1998.
    [2] Jiang H, Ralph D. Smooth SQP method for mathematical programs with nonlinear complementarity constraints[J].SIAM J Optimization,2000,10(3):779-808. doi: 10.1137/S1052623497332329
    [3] Fukushima M, Luo Z Q, Pang J S. A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints[J].Comp Opti Appl,1998,10(1):5-34. doi: 10.1023/A:1018359900133
    [4] Ma C F, Liang G P. A new successive approximation damped Newton method for nonlinear complementarity problems[J].Journal of Mathematical Research and Exposition,2003,23(1):1-6.
    [5] 朱志斌,罗志军,曾吉文. 互补约束均衡问题一个新的磨光技术[J].应用数学和力学,2007,28(10): 1253-1260.
    [6] Fukushima M, Pang J S. Some feasibility issues in mathematical programs with equilibrium constraints[J].SIAM J Optimization,1998,8(3): 673-681. doi: 10.1137/S105262349731577X
    [7] Panier E R, Tits A L. On combining feasibility, descent and superlinear convergence in inequality constrained optimization[J].Mathematical Programming,1993,59(1): 261-276. doi: 10.1007/BF01581247
    [8] Zhu Z B, Zhang K C. A superlinearly convergent SQP algorithm for mathematical programs with linear complementarity constraints[J].Applied Mathematics and Computation,2006,172(1): 222-244. doi: 10.1016/j.amc.2005.01.141
    [9] Panier E R, Tits A L. A superlinearly convergent feasible method for the solution of inequality constrained optimization problems[J].SIAM J Control Optim,1987,25(3): 934-950. doi: 10.1137/0325051
    [10] Facchinei F,Lucidi S. Quadraticly and superlinearly convergent for the solution of inequality constrained optimization problem[J].J Optim Theory Appl,1995,85(2): 265-289. doi: 10.1007/BF02192227
  • 加载中
计量
  • 文章访问数:  1548
  • HTML全文浏览量:  155
  • PDF下载量:  1054
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-07-19
  • 修回日期:  2009-02-27
  • 刊出日期:  2009-05-15

目录

    /

    返回文章
    返回