留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半正定张量半正定方根唯一性的直接证明

邵跃 吕存景

邵跃, 吕存景. 半正定张量半正定方根唯一性的直接证明[J]. 应用数学和力学, 2009, 30(6): 663-666. doi: 10.3879/j.issn.1000-0887.2009.06.005
引用本文: 邵跃, 吕存景. 半正定张量半正定方根唯一性的直接证明[J]. 应用数学和力学, 2009, 30(6): 663-666. doi: 10.3879/j.issn.1000-0887.2009.06.005
SHAO Yue, LÜ Cun-jing. Direct Proof of the Uniqueness of the Square-Root of a Positive Semi-Definite Tensor[J]. Applied Mathematics and Mechanics, 2009, 30(6): 663-666. doi: 10.3879/j.issn.1000-0887.2009.06.005
Citation: SHAO Yue, LÜ Cun-jing. Direct Proof of the Uniqueness of the Square-Root of a Positive Semi-Definite Tensor[J]. Applied Mathematics and Mechanics, 2009, 30(6): 663-666. doi: 10.3879/j.issn.1000-0887.2009.06.005

半正定张量半正定方根唯一性的直接证明

doi: 10.3879/j.issn.1000-0887.2009.06.005
详细信息
    作者简介:

    邵玥(1986- ),男,重庆人,硕士生(E-mail:shaoy04@mails.tsinghua.edu.cn);吕存景(1981- ),男,河南南阳人,硕士生(联系人.Tel:+86-10-62783814;E-mail:lvcj05@mails.tsinghua.edu.cn).

  • 中图分类号: O183.2;O34

Direct Proof of the Uniqueness of the Square-Root of a Positive Semi-Definite Tensor

  • 摘要: 研究半正定张量半正定方根的唯一性问题.避开了二阶张量特征值的概念和对称二阶张量谱分解定理,运用简单的预备知识,直接证明了二阶半正定张量半正定方根的唯一性.
  • [1] Garikipati K, Arruda E M, Grosh K,et al. A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics[J].J Mech Phys Solids,2004,52(7):1595-1625. doi: 10.1016/j.jmps.2004.01.004
    [2] Husler O, Schick D, Tsakmakis Ch. Description of plastic anisotropy effects at large deformations—part Ⅱ: the case of transverse isotropy[J].Internat J Plasticity 2002,20(2):199-223.
    [3] Ehret A E ,Itskov M. Modeling of anisotropic softening phenomena: application to soft biological tissues[J].Internat J Plasticity,2008,25(5):901-919.
    [4] Schrder J, Neff P, Ebbing V. Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors[J].J Mech Phys Solids,2008,56(12):3486-3506. doi: 10.1016/j.jmps.2008.08.008
    [5] Jog C S. On the explicit determination of the polar decomposition in n-dimensional vector spaces[J].J Elasticity,2002,66(2):159-169. doi: 10.1023/A:1021253906202
    [6] Stephenson R A. On the uniqueness of the square-root of a symmetric, positive-definite tensor[J].J Elasticity,1980,10(2):213-214. doi: 10.1007/BF00044505
    [7] He Q C. A direct proof of the uniqueness of the square-root of a positive-definite tensor[J].J Elasticity,1997,47(3):251-253. doi: 10.1023/A:1007448905870
  • 加载中
计量
  • 文章访问数:  2147
  • HTML全文浏览量:  195
  • PDF下载量:  794
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-30
  • 修回日期:  2009-05-08
  • 刊出日期:  2009-06-15

目录

    /

    返回文章
    返回