Direct Proof of the Uniqueness of the Square-Root of a Positive Semi-Definite Tensor
-
摘要: 研究半正定张量半正定方根的唯一性问题.避开了二阶张量特征值的概念和对称二阶张量谱分解定理,运用简单的预备知识,直接证明了二阶半正定张量半正定方根的唯一性.Abstract: Understanding the basic properties of the positive semi-definite tensor is prerequisite for its wide application in theoretical and practical field,especially for its square-root.The uniqueness of the square-root of a positive semi-definite tensor was proven without resorting to the notion of eigenvalues,eigenvectors and the spectral decomposition of the second-order symmetric tensor.
-
Key words:
- positive semi-definite tensor /
- second-order tensor /
- uniqueness /
- decomposition
-
[1] Garikipati K, Arruda E M, Grosh K,et al. A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics[J].J Mech Phys Solids,2004,52(7):1595-1625. doi: 10.1016/j.jmps.2004.01.004 [2] Husler O, Schick D, Tsakmakis Ch. Description of plastic anisotropy effects at large deformations—part Ⅱ: the case of transverse isotropy[J].Internat J Plasticity 2002,20(2):199-223. [3] Ehret A E ,Itskov M. Modeling of anisotropic softening phenomena: application to soft biological tissues[J].Internat J Plasticity,2008,25(5):901-919. [4] Schrder J, Neff P, Ebbing V. Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors[J].J Mech Phys Solids,2008,56(12):3486-3506. doi: 10.1016/j.jmps.2008.08.008 [5] Jog C S. On the explicit determination of the polar decomposition in n-dimensional vector spaces[J].J Elasticity,2002,66(2):159-169. doi: 10.1023/A:1021253906202 [6] Stephenson R A. On the uniqueness of the square-root of a symmetric, positive-definite tensor[J].J Elasticity,1980,10(2):213-214. doi: 10.1007/BF00044505 [7] He Q C. A direct proof of the uniqueness of the square-root of a positive-definite tensor[J].J Elasticity,1997,47(3):251-253. doi: 10.1023/A:1007448905870
计量
- 文章访问数: 2147
- HTML全文浏览量: 195
- PDF下载量: 794
- 被引次数: 0