留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Duffing简谐振子同伦分析法求解

冯少东 陈立群

冯少东, 陈立群. Duffing简谐振子同伦分析法求解[J]. 应用数学和力学, 2009, 30(9): 1015-1020. doi: 10.3879/j.issn.1000-0887.2009.09.002
引用本文: 冯少东, 陈立群. Duffing简谐振子同伦分析法求解[J]. 应用数学和力学, 2009, 30(9): 1015-1020. doi: 10.3879/j.issn.1000-0887.2009.09.002
FENG Shao-dong, CHEN Li-qun. Homotopy Analysis Approach to the Duffing-Harmonic Oscillator[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1015-1020. doi: 10.3879/j.issn.1000-0887.2009.09.002
Citation: FENG Shao-dong, CHEN Li-qun. Homotopy Analysis Approach to the Duffing-Harmonic Oscillator[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1015-1020. doi: 10.3879/j.issn.1000-0887.2009.09.002

Duffing简谐振子同伦分析法求解

doi: 10.3879/j.issn.1000-0887.2009.09.002
基金项目: 国家杰出青年科学基金资助项目(10725209);国家自然科学基金资助项目(10672092);上海市优秀学科带头人计划资助项目(09XD1401700);上海市重点学科建设资助项目(Y0103)
详细信息
    作者简介:

    冯少东(1984- ),男,浙江宁波人,硕士生(E-mail:shaodong6819@163.com);陈立群(1960- ),博士生导师(联系人.Tel:+86-21-66136905;E-mail:lqchen@shu.edu.cn).

  • 中图分类号: O241.7; O322

Homotopy Analysis Approach to the Duffing-Harmonic Oscillator

  • 摘要: 利用同伦分析方法求解了Duffing简谐振子,数值确定了变形方程中的辅助参数,得到了一族响应和频率的近似周期解,该解与精确解符合很好.结果表明,同伦分析法在求解强非线性振子时,仍然是一种行之有效的方法.
  • [1] Mickens R E.Mathematical and numerical study of the Duffing-harmonic oscillator[J].J Sound Vibration,2001,244(3):563-567. doi: 10.1006/jsvi.2000.3502
    [2] Lim C W,Wu B S.A new analytical approach to the Duffing-harmonic oscillator[J].Phys Lett A,2003,311(5):365-377. doi: 10.1016/S0375-9601(03)00513-9
    [3] Tiwari S B,Rao B N,Swamy N S,et al.Analytical study on a Duffing-harmonic oscillator[J].J Sound Vibration,2005,285(4):1217-1222. doi: 10.1016/j.jsv.2004.11.001
    [4] Hu H,Tang J H.Solution of a Duffing-harmonic oscillator by the method of harmonic balance[J].J Sound Vibration,2006,294(3):637-639. doi: 10.1016/j.jsv.2005.12.025
    [5] Lim C W,Wu B S,Sun W P.Higher accuracy analytical approximations to the Duffing-harmonic oscillator[J].J Sound Vibration,2006,296(4):1039-1045. doi: 10.1016/j.jsv.2006.02.020
    [6] Hu H.Solutions of the Duffing-harmonic oscillator by an iteration procedure[J].J Sound Vibration,2006,298(1):446-452. doi: 10.1016/j.jsv.2006.05.023
    [7] Murdock J A.Perturbations:Theory and Methods[M].New York:Wiley,1991.
    [8] Nayfeh A H.Perturbation Methods[M].New York:Wiley,2000.
    [9] Liao S J.The proposed homotopy analysis technique for the solution of nonlinear problems[D].PhD thesis.Shanghai:Shanghai Jiao Tong University,1992.
    [10] Liao S J.Beyond Perturbation:Introduction to the Homotopy Analysis Method[M].Boca Raton:Chapman & Hall/CRC Press,2003.
    [11] Liao S J,Tan Y.A general approach to obtain series solutions of nonlinear differential equations[J].Studies Appl Math,2007,119(4):297-354. doi: 10.1111/j.1467-9590.2007.00387.x
    [12] 廖世俊.超越摄动:同伦分析方法基本思想及其应用[J].力学进展,2008,38(1):1-34.
    [13] Liao S J.An approximate solution technique not depending on small parameters:a special example[J].Int J Non-Linear Mech,1995,30(3):371-380. doi: 10.1016/0020-7462(94)00054-E
    [14] Liao S J,Chwang A T.Application of homotopy analysis method in nonlinear oscillations[J].ASME,J Appl Mech,1998,65(4):914-922. doi: 10.1115/1.2791935
    [15] Pirbodaghi T,Hoseini S H,Ahmadian M T,et al.Duffing equations with cubic and quintic nonlinearities[J].Comput Math Appl,2009,57(3):500-506. doi: 10.1016/j.camwa.2008.10.082
  • 加载中
计量
  • 文章访问数:  1590
  • HTML全文浏览量:  160
  • PDF下载量:  1251
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-01-13
  • 修回日期:  2009-07-20
  • 刊出日期:  2009-09-15

目录

    /

    返回文章
    返回