留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多阶梯梁系统的3:1内共振

A·特金 E·奥兹卡亚 S·M·巴哥达德利

A·特金, E·奥兹卡亚, S·M·巴哥达德利. 多阶梯梁系统的3:1内共振[J]. 应用数学和力学, 2009, 30(9): 1057-1068. doi: 10.3879/j.issn.1000-0887.2009.09.007
引用本文: A·特金, E·奥兹卡亚, S·M·巴哥达德利. 多阶梯梁系统的3:1内共振[J]. 应用数学和力学, 2009, 30(9): 1057-1068. doi: 10.3879/j.issn.1000-0887.2009.09.007
A. Tekin, E. Özkaya, S. M. BagdatlL. 3: 1 Internal Resonance in Multiple Stepped Beam Systems[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1057-1068. doi: 10.3879/j.issn.1000-0887.2009.09.007
Citation: A. Tekin, E. Özkaya, S. M. BagdatlL. 3: 1 Internal Resonance in Multiple Stepped Beam Systems[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1057-1068. doi: 10.3879/j.issn.1000-0887.2009.09.007

多阶梯梁系统的3:1内共振

doi: 10.3879/j.issn.1000-0887.2009.09.007
基金项目: 土耳其科学技术研究委员会(TUBITAK)资助项目(104M427)
详细信息
  • 中图分类号: O322;O175.29

3: 1 Internal Resonance in Multiple Stepped Beam Systems

  • 摘要: 研究了具有三次非线性项的多阶梯梁的振动.讨论了该系统3∶1内共振情况.运用多重尺度法,即一种摄动技术,得到该问题的一般近似解,并得到两种模型的振幅和相位调制方程.这些方程组用来确定稳态解及其稳定性.假设外加的强迫频率接近于较低的频率.在研究的数值部分,讨论固有频率中的3∶1情况.对两端固支和一端固支另一端简支,观测到的频率位于第一和第二固有频率之间;对两端简支,观测到的频率位于第二和第三固有频率之间.最后,利用数值算法求解3∶1内共振.第一模型为两端固支和一端固支另一端简支梁的外激励模型;第二模型为两端简支梁的外激励模型.然后,当外激励第一模型时,研究第一、二模型的振幅.当外激励第二模型时,研究第二、三模型的振幅.对振动的内共振模型,画出强迫响应、阻尼响应和频率响应曲线.同时进行这些曲线的稳定性分析.
  • [1] ?zkaya E,Pakdemirli M,?z H R.Nonlinear vibrations of a beam-mass system under different boundary conditions[J].Journal of Sound and Vibration,1997,199(4):679-696. doi: 10.1006/jsvi.1996.0663
    [2] ?zkaya E.Non-linear transverse vibrations of a simply supported beam carrying concentrated masses[J].Journal of Sound and Vibration,2002,257(3):413-424. doi: 10.1006/jsvi.2002.5042
    [3] ?zkaya E,Tekin A.Non-linear vibrations of stepped beam system under different boundary conditions[J].Structural Engineering AND Mechanics,2007,27(3):333-345.
    [4] ?zkaya E,Tekin A.Non-linear transverse vibrations of a clamped supported beam with multi-stepped[A].In:The Fifth International Conference on Dynamics Systems and Applications[C].Georgia,USA:Atlanta,2007.
    [5] Naguleswaran S.Natural frequencies,sensitivity and mode shape details of an Euler-Bernoulli beam with one-step change in cross-section and with ends on classical supports[J].Journal of Sound and Vibration,2002,252(4):751-767. doi: 10.1006/jsvi.2001.3743
    [6] Naguleswaran S.Vibration of an Euler-Bernoulli beam on elastic end supports and with up to three step changes in cross section[J].International Journal of Mechanical Sciences,2002,44(12):2541-2555. doi: 10.1016/S0020-7403(02)00190-X
    [7] Abe A.On non-linear vibration analyses of continuous systems with quadratic and cubic non-linearities[J].International Journal of Non-Linear Mechanics,2006,41(8):873-879. doi: 10.1016/j.ijnonlinmec.2006.05.005
    [8] Nayfeh A H,Lacarbonara W,Chin C.Non-linear normal modes of buckled beams:Three-to-one and one-to-one internal resonances[J].Nonlinear Dynamics,1999,18(3):253-273. doi: 10.1023/A:1008389024738
    [9] Chin C,Nayfeh A H.Three-to-one internal resonances in hinged-clamped beams[J].Nonlinear Dynamics,1997,12(2):129-154. doi: 10.1023/A:1008229503164
    [10] Nayfeh A H,Mook D T,Nayfeh J F.Some aspects of modal interactions in the response of beams[A].In:28th Structures,Structural Dynamics and Material Conference[C].Monterey:AIAA-1987-777,1987.
    [11] Lau S L,Cheung Y K,Chen S.An alternative perturbation procedure of multiple scales for non-linear dynamics systems[J].Journal of Applied Mechanics,1989,56(3):667-675. doi: 10.1115/1.3176144
    [12] Chen S H,Cheung Y K,Lau S L.On the internal resonance of multi-degree-of-freedom systems with cubic non-linearity[J].Journal of Sound and Vibration,1989,128(1):13-24. doi: 10.1016/0022-460X(89)90677-9
    [13] 陈予恕,杨彩霞,吴志强,等.具有平方、立方非线性项的耦合动力学系统1:2内共振分岔[J].应用数学和力学,2001,22(8):817-824.
    [14] Riedel C H,Tan C A.Coupled,forced response of an axially moving strip with internal resonance[J].International Journal of Non-Linear Mechanics,2002,37(1):101-116. doi: 10.1016/S0020-7462(00)00100-1
    [15] Pakdemirli M,?zkaya E.Three-to-one internal resonances in a general cubic non-linear continuous system[J].Journal of Sound and Vibration,2003,268(3):543-553. doi: 10.1016/S0022-460X(03)00364-X
    [16] Pakdemirli M.Vibrations of continuous systems with a general operator notation suitable for perturbative calculations[J].Journal of Sound and Vibration,2001,246(5):841-851. doi: 10.1006/jsvi.2001.3691
    [17] evik M,Pakdemirli M.Non-linear vibrations of suspension bridges with external excitation[J].Journal of Non-Linear Mechanics,2005,40(6):901-923. doi: 10.1016/j.ijnonlinmec.2004.11.002
    [18] ?z H R,Pakdemirli M,Boyac H.Non-linear vibrations and stability of an axially moving beam with time dependent velocity[J].International Journal of Non-Linear Mechanics,2001,36(1):107-115. doi: 10.1016/S0020-7462(99)00090-6
    [19] ?z H R,?zkaya E.Three-to-one internal resonances in a curved beam resting on an elastic foundation[J].International Journal of Applied Mechanics and Engineering,2005,10(4):667-678.
  • 加载中
计量
  • 文章访问数:  1833
  • HTML全文浏览量:  174
  • PDF下载量:  809
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-01-20
  • 修回日期:  2009-06-19
  • 刊出日期:  2009-09-15

目录

    /

    返回文章
    返回