留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变差积分型约束总极值问题的不连续罚途径

陈柳 姚奕荣 郑权

陈柳, 姚奕荣, 郑权. 变差积分型约束总极值问题的不连续罚途径[J]. 应用数学和力学, 2009, 30(9): 1125-1134. doi: 10.3879/j.issn.1000-0887.2009.09.015
引用本文: 陈柳, 姚奕荣, 郑权. 变差积分型约束总极值问题的不连续罚途径[J]. 应用数学和力学, 2009, 30(9): 1125-1134. doi: 10.3879/j.issn.1000-0887.2009.09.015
CHEN Liu, YAO Yi-rong, ZHENG Quan. Discontinuous Penalty Approach With Deviation Integral for Global Constrained Minimization[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1125-1134. doi: 10.3879/j.issn.1000-0887.2009.09.015
Citation: CHEN Liu, YAO Yi-rong, ZHENG Quan. Discontinuous Penalty Approach With Deviation Integral for Global Constrained Minimization[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1125-1134. doi: 10.3879/j.issn.1000-0887.2009.09.015

变差积分型约束总极值问题的不连续罚途径

doi: 10.3879/j.issn.1000-0887.2009.09.015
基金项目: 国家自然科学基金资助项目(10771133);上海市重点学科(运筹学与控制论)建设资助项目(S30104)
详细信息
    作者简介:

    陈柳(1985- ),女,硕士生(联系人.E-mail:chenliu07@shu.edu.cn).

  • 中图分类号: O327

Discontinuous Penalty Approach With Deviation Integral for Global Constrained Minimization

  • 摘要: 结合积分途径运用不连续精确罚函数来求解全局约束最小化问题.进一步,提出了约束变差积分的一般形式并证明了其分析性质,同时也给出并证明了其全局最优性条件,并由此设计了一个新算法.基于Monte-Carlo模拟技术,运用交叉熵方法和重要样本实现了该算法.数值实验也说明了这个新算法是有效的.
  • [1] YAO Yi-rong, CHEN Liu,ZHENG Quan. Optimality condition and algorithm with deviation integral for global optimization[J].Journal of Mathematical Analysis and Applications,2009,357(2):371-384. doi: 10.1016/j.jmaa.2009.04.022
    [2] Ross S M.Simulation[M].3rd Ed.New York:Academic Press,2002.
    [3] De Boer P-T, Kroese D P, Mannor S,et al.A tutorial on the cross-entropy method[J].Annals of Operations Research,2005,134(1):19-67. doi: 10.1007/s10479-005-5724-z
    [4] Kroese D P, Porotsky S, Rubinstein R Y.The cross-entropy method for continuous multi-extremal optimization[J].Methodology and Computing in Applied Probability,2006,8(3):383-407. doi: 10.1007/s11009-006-9753-0
    [5] Rubinstein R Y.The cross-entropy method for combinatorial and continuous optimization[J].Methodology and Computing in Applied Probability,1999,1(2):127-190. doi: 10.1023/A:1010091220143
    [6] Zheng Q.Robust analysis and global minimization of a class of discontinuous functions (Ⅰ)[J].Acta Mathematicae Applicatae Sinica, English Ser,1990,6(3):205-223. doi: 10.1007/BF02019147
    [7] Zheng Q.Robust analysis and global minimization of a class of discontinuous functions (Ⅱ)[J].Acta Mathematicae Applicatae Sinica, English Ser,1990,6(4):317-337. doi: 10.1007/BF02015339
    [8] Zheng Q.Robust analysis and global optimization[J].Annals of Operations Research,1990,24(1):273-286. doi: 10.1007/BF02216828
    [9] SHI Shu-zhong, ZHENG Quan, ZHUANG De-ming.Discontinuous robust mapping are approximatable[J].Trans Amer Math Soc,1995,347(12):4943-4957. doi: 10.1090/S0002-9947-1995-1308024-X
    [10] ZHENG Quan, ZHANG Lian-sheng.Global minimization of constrained problems with discontinuous penalty functions[J].Computers & Mathematics With Applications,1999,37(4/5):41-58.
    [11] Zheng Q, Zhuang D-M.Integral global optimization of constrained problems in functional spaces with discontinuous penalty functions[A].In:Floudas C A, Parclalos P M, Eds.Recent Advances in Global Optimization[C].Princeton:Princeton University Press,1992,298-320.
  • 加载中
计量
  • 文章访问数:  1652
  • HTML全文浏览量:  101
  • PDF下载量:  844
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-05
  • 修回日期:  2009-06-27
  • 刊出日期:  2009-09-15

目录

    /

    返回文章
    返回