留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球形纳米颗粒Brown凝并碰撞效率的新表达式

陈忠利 游振江

陈忠利, 游振江. 球形纳米颗粒Brown凝并碰撞效率的新表达式[J]. 应用数学和力学, 2010, 31(7): 812-821. doi: 10.3879/j.issn.1000-0887.2010.07.006
引用本文: 陈忠利, 游振江. 球形纳米颗粒Brown凝并碰撞效率的新表达式[J]. 应用数学和力学, 2010, 31(7): 812-821. doi: 10.3879/j.issn.1000-0887.2010.07.006
CHEN Zhong-li, YOU Zhen-jiang. New Expression for Collision Efficiency of Spherical Nanoparticles in Brownian Coagulation[J]. Applied Mathematics and Mechanics, 2010, 31(7): 812-821. doi: 10.3879/j.issn.1000-0887.2010.07.006
Citation: CHEN Zhong-li, YOU Zhen-jiang. New Expression for Collision Efficiency of Spherical Nanoparticles in Brownian Coagulation[J]. Applied Mathematics and Mechanics, 2010, 31(7): 812-821. doi: 10.3879/j.issn.1000-0887.2010.07.006

球形纳米颗粒Brown凝并碰撞效率的新表达式

doi: 10.3879/j.issn.1000-0887.2010.07.006
基金项目: 国家自然科学基金资助项目(10602052)
详细信息
    作者简介:

    陈忠利(1986- ),男,杭州人,博士生(联系人.Tel:+86-571-87952221;E-mail:chenz-honglizju@gmail.com).

  • 中图分类号: O359

New Expression for Collision Efficiency of Spherical Nanoparticles in Brownian Coagulation

  • 摘要: 研究了邻苯二甲酸二辛酯纳米颗粒在Brown凝并过程中的碰撞效率.在考虑Stokes阻力、润滑力、van der Waals力和颗粒变形恢复力的情况下推导了一组碰撞方程,通过数值求解这组方程,得到了当颗粒半径从50 nm到500 nm变化时,颗粒碰撞效率和半径之间的关系,计算得到的结果和实验结果符合较好.计算结果表明,在颗粒半径为50 nm到500 nm的情况下,颗粒的碰撞效率随颗粒半径的增加而减小.基于计算结果,提出了颗粒碰撞效率的新表达式.
  • [1] LIN Jian-zhong, LIN Pei-feng, CHEN Hua-jun. Research on the transport and deposition of nanoparticles in a rotating curved pipe[J]. Physics of Fluids, 2009, 21(12):1-11.
    [2] YU Ming-zhou, LIN Jian-zhong. Taylor-expansion moment method for agglomerate coagulation due to Brownian motion in the entire size regime[J]. Journal of Aerosol Science, 2009, 40(6):549-562. doi: 10.1016/j.jaerosci.2009.03.001
    [3] YU Ming-zhou, LIN Jian-zhong, CHAN Tat-leung. Effect of precursor loading on non-spherical TiO2 nanoparticle synthesis in a diffusion flame reactor[J]. Chemical Engineering Science, 2008, 63(9): 2317-2329. doi: 10.1016/j.ces.2007.11.008
    [4] YU Ming-zhou, LIN Jian-zhong, CHAN Tat-leung. Numerical simulation of nanoparticle synthesis in diffusion flame reactor[J]. Powder Technology, 2008, 181(1): 9-20. doi: 10.1016/j.powtec.2007.03.037
    [5] Yin Z Q, Lin J Z, Zhou K, Chan T L. Numerical simulation of the formation of pollutant nanoparticles in the exhaust twin-jet plume of a moving car[J]. International Journal of Nonlinear Sciences and Numerical Simulations, 2007, 8(4): 535-543.
    [6] YU Ming-zhou, LIN Jian-zhong, CHEN Li-hua, CHAN Tat-leung. Large eddy simulation of a planar jet flow with nanoparticle coagulation[J]. Acta Mechanica Sinaca, 2006, 22(4): 293-300. doi: 10.1007/s10409-006-0011-z
    [7] Chan T L, Lin J Z, Zhou K, Chan C K. Simultaneous numerical simulation of nano and fine particle coagulation and dispersion in a round jet[J]. Journal of Aerosol Science, 2006, 37(11): 1545-1561. doi: 10.1016/j.jaerosci.2006.03.004
    [8] Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y, Lee S C. Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet[J]. Int J Nonlinear Sciences and Numerical Simulation, 2007, 8(1):45-54.
    [9] Chun J, Koch D L. The effects of non-continuum hydrodynamics on the Brownian coagulation of aerosol particles[J]. Journal of Aerosol Science, 2006, 37(4): 471-482. doi: 10.1016/j.jaerosci.2005.05.002
    [10] Russel W B, Saville D A, Schowalter W R. Colloidal Dispersions[M]. Cambridge: Cambridge University Press, 1989.
    [11] FENG Yu, LIN Jian-zhong. The collision efficiency of spherical dioctyl phthalate aerosol particles in the Brownian coagulation[J]. Chinese Physics B, 2008, 17(12): 4547-4553. doi: 10.1088/1674-1056/17/12/036
    [12] Cunningham E. On the velocity of steady fall of spherical particles through fluid medium[J]. Proc Roy Soc London Ser A, 1910, 83(563): 357-369. doi: 10.1098/rspa.1910.0024
    [13] Yan Z Y. Theory of Flow With Low Reynolds Number[M]. Beijing: Peking University Press, 2002.
    [14] Zhang W B, Noda R J, Horio M. Evaluation of lubrication force on colliding particles for DEM simulation of fluidized beds[J]. Powder Technology, 2005, 158(1/3): 92-101. doi: 10.1016/j.powtec.2005.04.021
    [15] Hocking L M. The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres[J]. J Engineering Mathematics, 1973, 7(3): 207-221. doi: 10.1007/BF01535282
    [16] Israelachvili J. Intermolecular and Surface Forces[M]. New York: Academic, 1992.
    [17] Zhang J P, Fan L S, Zhu C, Pfeffer R, Qi D. Dynamic behavior of collision of elastic spheres in viscous fluids[J]. Powder Technology, 1999, 106(1/2): 98-109. doi: 10.1016/S0032-5910(99)00053-4
    [18] Devir S E. On the coagulation of aerosols Ⅲ: effect of weak electric charges on rate[J]. Journal of Colloid and Interface Science, 1967, 23(1): 80-89. doi: 10.1016/0021-9797(67)90088-4
  • 加载中
计量
  • 文章访问数:  1303
  • HTML全文浏览量:  78
  • PDF下载量:  863
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-06-01
  • 刊出日期:  2010-07-15

目录

    /

    返回文章
    返回