留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气制动期间探测器的气动特性和轨道计算

张文普 韩波 张成义

张文普, 韩波, 张成义. 大气制动期间探测器的气动特性和轨道计算[J]. 应用数学和力学, 2010, 31(9): 1016-1026. doi: 10.3879/j.issn.1000-0887.2010.09.002
引用本文: 张文普, 韩波, 张成义. 大气制动期间探测器的气动特性和轨道计算[J]. 应用数学和力学, 2010, 31(9): 1016-1026. doi: 10.3879/j.issn.1000-0887.2010.09.002
ZHANG Wen-pu, HAN Bo, ZHANG Cheng-yi. Spacecraft Aerodynamics and Trajectory Simulation During Aerobraking[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1016-1026. doi: 10.3879/j.issn.1000-0887.2010.09.002
Citation: ZHANG Wen-pu, HAN Bo, ZHANG Cheng-yi. Spacecraft Aerodynamics and Trajectory Simulation During Aerobraking[J]. Applied Mathematics and Mechanics, 2010, 31(9): 1016-1026. doi: 10.3879/j.issn.1000-0887.2010.09.002

大气制动期间探测器的气动特性和轨道计算

doi: 10.3879/j.issn.1000-0887.2010.09.002
基金项目: 航天科技CAST基金资助项目(CAST2006023)
详细信息
    作者简介:

    张文普(1971- ),男,陕西汉中人,副教授,博士(联系人.Tel:+86-571-87952682;E-mail:wpzhang@zju.edu.cn).

  • 中图分类号: V411.4; V412.4+1

Spacecraft Aerodynamics and Trajectory Simulation During Aerobraking

  • 摘要: 以NASA火星全球勘测(MGS)号探测器作为大气制动计算模型,应用DSMC方法模拟了探测器在大气制动期间的稀薄气体动力学特性,分析了不同来流密度情况下探测器的流场特性、气动特性的变化情况以及气体动力学系数的变化关系.并提出了气动力-气动热-轨道一体化计算模型,利用DSMC模拟技术以及经典动力学理论对大气制动轨道变化进行了计算和分析.研究结果表明:行星大气密度、探测器俯仰角、偏航角的变化对探测器的气动特性有重要影响,计算结果与文献中的结果表现出很好的一致性;气动力-气动热-轨道一体化计算可以模拟大气制动过程,模拟所得到的大气制动轨迹反映出较好的制动效果.
  • [1] Spencer David A, Tolson Robert. Aerobraking cost and risk decisions[J]. Journal of Spacecraft and Rockets, 2007, 44(6): 1285-1293. doi: 10.2514/1.24303
    [2] Repic E M, Boobar M G, Chapel F G. Aerobraking as a potential planetary capture mode[J]. J Spacecraft, 1968,5(8): 921-926. doi: 10.2514/3.29389
    [3] Gladden Roy E. Mars reconnaissance orbiter: aerobraking sequencing operations and lessons learned[R]. AIAA 2008-3353, 2008.
    [4] Haas Brian L, Schmitt Durwin A. Simulated rarefied aerodynamics of the Magellan spacecraft during aerobraking[J].Journal of Spacecraft and Rockets, 1994, 31(6): 980-985. doi: 10.2514/3.26547
    [5] Wilmoth R G, Rault D F G, Shane R W, Tolson R H. Rarefied aerothermodynamic predictions for Mars global surveyor[J]. Journal of Spacecraft and Rockets, 1999, 36(3): 314-322. doi: 10.2514/2.3473
    [6] Takashima Naruhisa, Wilmoth Richard G. Aerodynamics of Mars Odyssey[R]. AIAA-2002-4809, AIAA Atmospheric flight mechanics conference and exhibit, 5-8 August, 2002.
    [7] Kumar Mrinal, Tewari Ashish. Trajectory and attitude simulation for aerocapture and aerobraking[R]. AIAA 2004-5284, 2004.
    [8] Lebeau G J, Lumpkin III F E.Application highlights of the DSMC analysis code software for simulating rarefied flow[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(6/7): 595-609. doi: 10.1016/S0045-7825(01)00304-8
    [9] 沈青. 稀薄气体动力学[M]. 北京:国防工业出版社,2003.
    [10] Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows[M]. Oxford: Clarendon Press, 1994.
    [11] Shane Russell W, Tolson Robert H, Rault Didier F G. Mars global surveyor aerodynamics for maneuvers in Martian atmosphere[R]. AIAA 1997-2509-199, 1997.
    [12] Lyons D T, Beerer J G, Esposito P, Johnston M, Willcockson W. Mars global surveyor: aerobraking mission overview[J]. Journal of Spacecraft and Rockets, 1999, 36(3): 307-313. doi: 10.2514/2.3472
    [13] Mazarico Erwan, Zuber Maria T, Lemoine Frank G, Smith David E. Atmospheric density during the aerobraking of Mars Odyssey from radio tracking data[J]. Journal of Spacecraft and Rockets, 2007, 44(6): 1165-1171. doi: 10.2514/1.28448
  • 加载中
计量
  • 文章访问数:  1292
  • HTML全文浏览量:  85
  • PDF下载量:  767
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-07-09
  • 刊出日期:  2010-09-15

目录

    /

    返回文章
    返回