留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虚拟解法分析浸入边界法的精度

宫兆新 鲁传敬 黄华雄

宫兆新, 鲁传敬, 黄华雄. 虚拟解法分析浸入边界法的精度[J]. 应用数学和力学, 2010, 31(10): 1141-1151. doi: 10.3879/j.issn.1000-0887.2010.10.001
引用本文: 宫兆新, 鲁传敬, 黄华雄. 虚拟解法分析浸入边界法的精度[J]. 应用数学和力学, 2010, 31(10): 1141-1151. doi: 10.3879/j.issn.1000-0887.2010.10.001
GONG Zhao-xin, LU Chuan-jing, HUANG Hua-xiong. Accuracy Analysis of the Immersed Boundary Method Using the Method of Manufactured Solutions[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1141-1151. doi: 10.3879/j.issn.1000-0887.2010.10.001
Citation: GONG Zhao-xin, LU Chuan-jing, HUANG Hua-xiong. Accuracy Analysis of the Immersed Boundary Method Using the Method of Manufactured Solutions[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1141-1151. doi: 10.3879/j.issn.1000-0887.2010.10.001

虚拟解法分析浸入边界法的精度

doi: 10.3879/j.issn.1000-0887.2010.10.001
基金项目: 国家自然科学基金资助项目(10472070)
详细信息
    作者简介:

    宫兆新(1982- ),女,黑龙江人,博士生(E-mail:jackyff@sjtu.edu.cn);鲁传敬,教授(联系人.E-mail:cjlu@mail.sjtu.edu.cn).

  • 中图分类号: O368;O241.82

Accuracy Analysis of the Immersed Boundary Method Using the Method of Manufactured Solutions

  • 摘要: 浸入边界法是对流固耦合系统进行建模和模拟的有效工具,在生物力学领域的应用尤为广泛.该文的工作主要包含两个部分:程序验证和精度分析.前者证明了程序的正确性,后者给出了浸入边界法的精度.两部分工作均使用虚拟解法作为研究工具.在程序验证部分,使用二阶空间离散格式进行数值计算,通过分析各种变量的离散误差,得到的程序计算精度阶是二阶,与理论精度阶一致,证明了数值计算所使用程序的正确性.精度分析部分工作在此基础上展开.引入压强跳跃,在动量方程中加入相应源项,通过分析带有源项的控制方程中各物理量的离散误差,证明浸入边界法只具有一阶精度.同时可以得出以下结论:粗网格无法敏感地捕捉浸入边界的影响;当Euler网格固定时,增加Lagrange标志点的数目并不会改善计算误差.
  • [1] Peskin C S. Numerical analysis of blood flow in the heart[J]. J Comput Phys,1977, 25(3): 220-252. doi: 10.1016/0021-9991(77)90100-0
    [2] Peskin C S, McQueen D M. A three-dimensional computational method for blood flow in the heart 1—immersed elastic fibers in a viscous incompressible fluid[J]. J Comput Phys,1989, 81(2): 372-405. doi: 10.1016/0021-9991(89)90213-1
    [3] Dillion R, Fauci L J, Gaver D. A microscale model of bacteria swimming, chemotaxis, and substrate transport[J]. J Theor Biol,1995, 177(4):325-340. doi: 10.1006/jtbi.1995.0251
    [4] Fauci L J,McDonald A. Sperm motility in the presence of boundaries[J]. B Math Biol, 1995, 57(5):679-699.
    [5] Fauci L J,Peskin C S. A computational model of aquatic animal locomotion[J]. J Comput Phys,1988, 77(1): 85-108. doi: 10.1016/0021-9991(88)90158-1
    [6] Bottino D C. Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method[J]. J Comput Phys,1998, 147(1):86-113. doi: 10.1006/jcph.1998.6074
    [7] Fogelson A L. Continumm models of platelet aggregation: formulation and mechanical properties[J]. SIAM J Appl Math, 1992, 52(4):1089-1110. doi: 10.1137/0152064
    [8] Fauci L J,Fogelson A L. Truncated Newton’s methods and the modeling of complex immersed elastic structures[J]. Comm Pur Appl Math,1993, 46(6):787-818. doi: 10.1002/cpa.3160460602
    [9] Eggleton C D,Popel A S. Large deformation of red blood cell ghosts in a simple shear flow[J]. Phys Fluids, 1998, 10(8):1834-1845. doi: 10.1063/1.869703
    [10] Tu C,Peskin C S. Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods[J]. SIAM J Sci Stat Comput, 1992, 13(6):1361-1376. doi: 10.1137/0913077
    [11] Stockie J M,Wetton B R. Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes[J]. J Comput Phys,1999, 154(1): 41-64. doi: 10.1006/jcph.1999.6297
    [12] Stockie J M,Wetton B R. Stability analysis for the immersed fiber problem[J]. SIAM J Appl Math,1995, 55(6): 1577-1591. doi: 10.1137/S0036139994267018
    [13] Gong Z X, Huang H X,Lu C J. Stability analysis of the immersed boundary method for a two-dimensional membrane with bending rigidity[J]. Communications in Computational Physics, 2008, 3(3): 704-723.
    [14] Beyer R P,Leveque R J. Analysis of a one-dimensional model for the immersed boundary method[J]. SIAM J Num Anal,1992, 29(2):332-364. doi: 10.1137/0729022
    [15] Lai M C,Peskin C S. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity[J]. J Comput Phys, 2000, 160(2): 705-719. doi: 10.1006/jcph.2000.6483
    [16] Griffith B E, Peskin C S. On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems[J], J Comput Phys, 2005, 208(1): 75-105.
    [17] Lai M C. Simulations of the flow past an array of circular cylinders as a test of the immersed boundary method[D]. Ph D thesis.New York: Courant Institute of Mathematical Sciences, New York University, 1998.
    [18] Leveque R J,Li Z. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources[J]. SIAM J Numer Anal, 1994, 31(4): 1019-1044. doi: 10.1137/0731054
    [19] Steinberg S,Roache P J. Symbolic manipulation and computation fluid dynamics[J]. J Comput Phys, 1985, 57(2):251-284. doi: 10.1016/0021-9991(85)90045-2
    [20] Roache P J. Verification and Validation in Computational Science and Engineering[M]. Albuquerque, NM: Hermosa Publishers, 1998.
    [21] Roache P J. Code verification by the method of manufactured solutions [J]. J Fluid Eng,2002, 124(1):4-10. doi: 10.1115/1.1436090
    [22] Oberkampf W L, Trucano T G. Validation methodology in computational fluid dynamics[R]. AIAA Paper 2000-2549, Denver, CO. 19-22, June, 2000.
    [23] Oberkampf W L, Trucano T G. Verification and validation in computational fluid dynamics[J]. AIAA Progress in Aerospace Sciences, 2002, 38(3): 209-272. doi: 10.1016/S0376-0421(02)00005-2
    [24] Roy C J, Nelson C C, Smith T M,Ober C C. Verification of Euler/Navier-Stokes codes using the method of manufactured solutions[J]. Int J Numer Mech Fluids, 2004, 44(6):599-620. doi: 10.1002/fld.660
    [25] Bond R B, Ober C C,Knupp P M. A manufactured solution for verifying CFD boundary conditions—part Ⅲ[C]36th AIAA Fluid Dynamics Conference and Exhibit. San Francisco, CA, 2006, 1966-1982.
    [26] Brunner T A. Development of a grey nonlinear thermal radiation diffusion verification problem[J]. Transactions of the American Nuclear Society, 2006, 95:876-878.
    [27] Eca L, Hoekstra M, Hay A,Pelletier D. On the construction of manufactured solutions for one- and two-equation eddy-viscosity models[J]. Int J Num Mech Fluids, 2007, 54(2):119-154. doi: 10.1002/fld.1387
    [28] Tremblay D, Etienne S, Pelletier D. Code verification and the method of manufactured solutions for fluid-structure interaction problems[C]36th AIAA Fluid Dynamics Conference, San Francisco, CA. 2. 2006, 882-892.
    [29] Peskin C S. The immersed boundary method [J]. Acta Numerica,2002, 11:435-477. doi: 10.1017/CBO9780511550140.006
  • 加载中
计量
  • 文章访问数:  1879
  • HTML全文浏览量:  169
  • PDF下载量:  903
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-06-17
  • 刊出日期:  2010-10-15

目录

    /

    返回文章
    返回