留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流经有热源多孔平板并伴有化学反应的传热传质混合对流MHD流动

J·祖额科 S·阿么德

J·祖额科, S·阿么德. 流经有热源多孔平板并伴有化学反应的传热传质混合对流MHD流动[J]. 应用数学和力学, 2010, 31(10): 1160-1171. doi: 10.3879/j.issn.1000-0887.2010.10.003
引用本文: J·祖额科, S·阿么德. 流经有热源多孔平板并伴有化学反应的传热传质混合对流MHD流动[J]. 应用数学和力学, 2010, 31(10): 1160-1171. doi: 10.3879/j.issn.1000-0887.2010.10.003
Joaqu韓 Zueco, Sahin Ahmed. Combined Heat and Mass Transfer by Mixed Convection MHD Flow Along a Porous Plate With Chemical Reaction in Presence of Heat Source[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1160-1171. doi: 10.3879/j.issn.1000-0887.2010.10.003
Citation: Joaqu韓 Zueco, Sahin Ahmed. Combined Heat and Mass Transfer by Mixed Convection MHD Flow Along a Porous Plate With Chemical Reaction in Presence of Heat Source[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1160-1171. doi: 10.3879/j.issn.1000-0887.2010.10.003

流经有热源多孔平板并伴有化学反应的传热传质混合对流MHD流动

doi: 10.3879/j.issn.1000-0887.2010.10.003
详细信息
  • 中图分类号: O361

Combined Heat and Mass Transfer by Mixed Convection MHD Flow Along a Porous Plate With Chemical Reaction in Presence of Heat Source

  • 摘要: 对流经无限竖直多孔平板的不可压缩粘性导电流体,稳定的传热传质混合对流MHD流动问题,给出了精确解和数值解.假定均匀磁场横向作用于流动方向,考虑了感应磁场及其能量的粘性和磁性损耗.多孔平板有恒定的吸入速度并均匀地混入流动速度.用摄动技术和数值方法求解控制方程.得到了平板上速度场、温度场、感应磁场、表面摩擦力和传热率的分析表达式.相关参数取不同数值时,用图形表示出问题的数值结果.讨论了从平板到流体的Hartmann数、化学反应参数、磁场的Prandtl数,以及包括速度场、温度场、浓度场和感应磁场等其它参数的影响.可以发现,热源/汇或Eckert数的增大,极大地提高了流体的速度值.x-方向的感应磁场随着Hartmann数、磁场的Prandtl数、热源/汇和粘性耗散的增大而增大.但是,研究表明,随着破坏性化学反应(K>0)的增大,流动速度、流体温度和感应磁场将减小.对色谱分析系统和材料加工的磁场控制,该研究在热离子反应堆模型、电磁感应、磁流体动力学传输现象中得到了应用.
  • [1] Ganesan P, Loganathan P. Heat and mass flux effects on a moving vertical plate with chemically reactive species diffusion[J]. Diffusion J Engineering Phys and Thermophys, 2002, 75(4): 899-909. doi: 10.1023/A:1020367102891
    [2] Ghaly A Y, Seddeek M A. Chebyshev finite difference method for the effects of chemical reaction, heat and mass transfer on laminar flow along a semi-infinite horizontal plate with temperature dependent viscosity[J]. Chaos Solutions & Fractals, 2004, 19(1): 61-70.
    [3] Muthucumaraswamy R, Ganesan P. Natural convection on a moving isothermal vertical plate with chemical reaction[J]. J Engineering Phys Thermophys, 2002, 75(1): 113-119. doi: 10.1023/A:1014826924926
    [4] Hossain M A, Hussain S, Rees D A S. Influence of fluctuating surface temperature and concentration on natural convection flow from a vertical flat plate[J]. ZAMM, 2001, 81(10): 699-709.
    [5] Khair K R, Bejan A. Mass transfer to natural convection to boundary layer flow driven by heat transfer[J]. J Heat Transfer, 1985, 107:979-981. doi: 10.1115/1.3247535
    [6] Lin H T, Wu C M. Combined heat and mass transfer by laminar natural convection from a vertical plate[J]. Heat and Mass Transfer, 1995, 30(6): 369-376. doi: 10.1007/BF01647440
    [7] Muthucumaraswamy R, Ganesan P, Soundalgekar V M. Heat and mass transfer effects on flow past an impulsively started vertical plate[J]. Acta Mechanica, 2001, 146(1/2): 1-8. doi: 10.1007/BF01178790
    [8] Chamkha A J. MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction[J]. Int Communication in Heat and Mass Transfer, 2003, 30(3): 413-422. doi: 10.1016/S0735-1933(03)00059-9
    [9] Chen C H. Combined heat and mass transfer in MHD free convection from a vertical plate Ohmic heating and viscous dissipation[J]. Int J Eng Sci, 2004, 42(7): 699-713. doi: 10.1016/j.ijengsci.2003.09.002
    [10] Aldoss T K, Al-Nimir M A. Effect of the local acceleration term on the MHD transient free convection flow over a vertical plate[J]. Int J for Numerical Methods for Heat Fluid Flow, 2005, 15(3): 296-305. doi: 10.1108/09615530510583883
    [11] Ahmed S. Effects of viscous dissipation and chemical reaction on transient free convective MHD flow over a vertical porous plate[J]. J of Energy, Heat and Mass Transfer, 2010, 32: 311-332.
    [12] Ahmed S. Free and forced convective three-dimensional flow with heat and mass transfer[J]. Int J Applied Mathematics and Mechanics, 2009, 5(1): 26-38.
    [13] Ahmed S. Transient three-dimensional flows through a porous medium with transverse permeability oscillating with time[J]. Emirates Journal for Engineering Research, 2008, 13(3): 11-17.
    [14] Ahmed S. Free and forced convective MHD oscillatory flows over an infinite porous surface in an oscillating free stream[J]. Latin American Applied Research, 2010, 10: 167-173.
    [15] Zueco-Jordn J. Numerical study of an unsteady free convective MHD flow of a dissipative fluid along a vertical plate subject to a constant heat flux[J]. Int J Engineering Science, 2006, 44(18/19): 1380-1393. doi: 10.1016/j.ijengsci.2006.08.006
    [16] Ahmed S, Liu I-Chung. Mixed convective three-dimensional heat and mass transfer flow with transversely periodic suction velocity[J]. Int J Applied Mathematics and Mechanics, 2010, 6(1): 58-73.
    [17] Nayfeh A, Namat-Nasser S. Electromagneto-thermoelastic plane waves in solids with thermal relaxation[J]. J Appl Mech Ser E, 1972, 39: 108. doi: 10.1115/1.3422596
    [18] Zueco J. Network method to study the transient heat transfer problem in a vertical channel with viscous dissipation[J]. Int Comm Heat Mass Transfer, 2006, 33(9): 1079-1087. doi: 10.1016/j.icheatmasstransfer.2006.06.009
    [19] Zueco J, Hernández-González A. Network simulation method applied to models of diffusion-limited gas bubble dynamics in tissue[J]. Acta Astronautica, 2010, 67(3/4): 344-352. doi: 10.1016/j.actaastro.2010.03.007
    [20] Zueco J, Bég O A. Network numerical analysis of hydromagnetic squeeze film between rotating disks over a wide range of Batchelor numbers[J]. Tribology International, 2010, 43(3): 532-543. doi: 10.1016/j.triboint.2009.09.002
    [21] Pspice 6.0. Irvine, California 92718. Microsim Corporation, 20 Fairbanks, 1994.
  • 加载中
计量
  • 文章访问数:  1839
  • HTML全文浏览量:  203
  • PDF下载量:  825
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-07-28
  • 刊出日期:  2010-10-15

目录

    /

    返回文章
    返回