留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对边简支的矩形平面弹性问题的辛本征展开定理

侯国林 阿拉坦仓

侯国林, 阿拉坦仓. 对边简支的矩形平面弹性问题的辛本征展开定理[J]. 应用数学和力学, 2010, 31(10): 1181-1190. doi: 10.3879/j.issn.1000-0887.2010.10.005
引用本文: 侯国林, 阿拉坦仓. 对边简支的矩形平面弹性问题的辛本征展开定理[J]. 应用数学和力学, 2010, 31(10): 1181-1190. doi: 10.3879/j.issn.1000-0887.2010.10.005
HOU Guo-lin, Alatancang. Symplectic Eigenfunction Expansion Theorem for the Rectangular Plane Elasticity Problems With Two Opposite Simply Supported[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1181-1190. doi: 10.3879/j.issn.1000-0887.2010.10.005
Citation: HOU Guo-lin, Alatancang. Symplectic Eigenfunction Expansion Theorem for the Rectangular Plane Elasticity Problems With Two Opposite Simply Supported[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1181-1190. doi: 10.3879/j.issn.1000-0887.2010.10.005

对边简支的矩形平面弹性问题的辛本征展开定理

doi: 10.3879/j.issn.1000-0887.2010.10.005
基金项目: 国家自然科学基金资助项目(10962004);高等学校博士学科点专项科研基金资助项目(20070126002);内蒙古自治区自然科学基金资助项目(20080404MS0104)
详细信息
    作者简介:

    侯国林(1980- ),男,内蒙古人,教授,博士(E-mail:houguolin@163.com);阿拉坦仓(1963- ),男,内蒙古人,教授,博士,博士生导师(联系人.E-mail:alatanca@imu.edu.cn).

  • 中图分类号: O175.3;O343.1

Symplectic Eigenfunction Expansion Theorem for the Rectangular Plane Elasticity Problems With Two Opposite Simply Supported

  • 摘要: 对来源于平面弹性问题的Hamilton算子的本征值问题进行了研究.在矩形域内含位移和应力的混合边界条件下,首先求解了相应算子的本征函数.接着,证明了本征函数系的完备性,这为施行分离变量法求解相应问题提供了可行性.最后,利用文中的辛本征展开定理获得了问题的一般解.
  • [1] 阿拉坦仓, 张鸿庆, 钟万勰. 矩阵多元多项式的带余除法及其应用[J].应用数学和力学, 2000, 21(7): 661-668.
    [2] 阿拉坦仓, 张鸿庆, 钟万勰. 一类偏微分方程的Hamilton正则表示[J].力学学报, 1999, 31(3): 347-357.
    [3] 陈勇, 郑宇, 张鸿庆. 一些数学物理问题中的Hamilton方程[J].应用数学和力学, 2003, 24(1): 19-24.
    [4] REN Wen-xiu, Alatancang. An algorithm and its application for obtaining some kind of infinite-dimensional Hamiltonian canonical formulation[J]. Chinese Physics, 2007, 16 (11): 3154-3160. doi: 10.1088/1009-1963/16/11/002
    [5] Vainberg M M. Variational Methods for the Study of Nonlinear Operators[M]. San Francisco: Holden-Day, 1964.
    [6] 钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.
    [7] Lim C W, Lü C F, Xiang Y, Yao W. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates [J]. Int J Eng Sci, 2009, 47 (1):131-140. doi: 10.1016/j.ijengsci.2008.08.003
    [8] Yao W, Zhong W X, Lim C W. Symplectic Elasticity[M]. Singapore:World Scientific Publishing, 2009.
    [9] HOU Guo-lin, Alatancang. On the feasibility of variable separation method based on Hamiltonian system for plane magnetoelectroelastic solids[J]. Chinese Physics B, 2008, 17(8): 2753-2758. doi: 10.1088/1674-1056/17/8/001
    [10] HOU Guo-lin, Alatancang. Completeness of eigenfunction systems for off-diagonal infinite-dimensional Hamiltonian operators[J]. Commun Theor Phys, 2010,53(2): 237-241. doi: 10.1088/0253-6102/53/2/06
    [11] Alatancang, Wu D Y. Completeness in the sense of Cauchy principal value of the eigenfunction systems of infinite dimensional Hamiltonian operator[J]. Sci China Ser A, 2009,52(1): 173-180.
    [12] Zou G. An exact symplectic geometry solution for the static and dynamic analysis of Reissner plates[J]. Comput Methods Appl Mech Engrg, 1998, 156(1/4): 171-178. doi: 10.1016/S0045-7825(97)00204-1
    [13] Zhong Y, Li R. Exact bending analysis of fully clamped rectangular thin plates subjected to arbitrary loads by new symplectic approach[J]. Mechanics Research Communications, 2009,36(6): 707-714. doi: 10.1016/j.mechrescom.2009.04.001
    [14] Elias M S, Rami Shakarchi. Fourier Analysis: An Introduction[M].Oxford: Princeton University Press, 2003.
  • 加载中
计量
  • 文章访问数:  2041
  • HTML全文浏览量:  143
  • PDF下载量:  1008
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-09-03
  • 刊出日期:  2010-10-15

目录

    /

    返回文章
    返回