[1] |
阿拉坦仓, 张鸿庆, 钟万勰. 矩阵多元多项式的带余除法及其应用[J].应用数学和力学, 2000, 21(7): 661-668.
|
[2] |
阿拉坦仓, 张鸿庆, 钟万勰. 一类偏微分方程的Hamilton正则表示[J].力学学报, 1999, 31(3): 347-357.
|
[3] |
陈勇, 郑宇, 张鸿庆. 一些数学物理问题中的Hamilton方程[J].应用数学和力学, 2003, 24(1): 19-24.
|
[4] |
REN Wen-xiu, Alatancang. An algorithm and its application for obtaining some kind of infinite-dimensional Hamiltonian canonical formulation[J]. Chinese Physics, 2007, 16 (11): 3154-3160. doi: 10.1088/1009-1963/16/11/002
|
[5] |
Vainberg M M. Variational Methods for the Study of Nonlinear Operators[M]. San Francisco: Holden-Day, 1964.
|
[6] |
钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.
|
[7] |
Lim C W, Lü C F, Xiang Y, Yao W. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates [J]. Int J Eng Sci, 2009, 47 (1):131-140. doi: 10.1016/j.ijengsci.2008.08.003
|
[8] |
Yao W, Zhong W X, Lim C W. Symplectic Elasticity[M]. Singapore:World Scientific Publishing, 2009.
|
[9] |
HOU Guo-lin, Alatancang. On the feasibility of variable separation method based on Hamiltonian system for plane magnetoelectroelastic solids[J]. Chinese Physics B, 2008, 17(8): 2753-2758. doi: 10.1088/1674-1056/17/8/001
|
[10] |
HOU Guo-lin, Alatancang. Completeness of eigenfunction systems for off-diagonal infinite-dimensional Hamiltonian operators[J]. Commun Theor Phys, 2010,53(2): 237-241. doi: 10.1088/0253-6102/53/2/06
|
[11] |
Alatancang, Wu D Y. Completeness in the sense of Cauchy principal value of the eigenfunction systems of infinite dimensional Hamiltonian operator[J]. Sci China Ser A, 2009,52(1): 173-180.
|
[12] |
Zou G. An exact symplectic geometry solution for the static and dynamic analysis of Reissner plates[J]. Comput Methods Appl Mech Engrg, 1998, 156(1/4): 171-178. doi: 10.1016/S0045-7825(97)00204-1
|
[13] |
Zhong Y, Li R. Exact bending analysis of fully clamped rectangular thin plates subjected to arbitrary loads by new symplectic approach[J]. Mechanics Research Communications, 2009,36(6): 707-714. doi: 10.1016/j.mechrescom.2009.04.001
|
[14] |
Elias M S, Rami Shakarchi. Fourier Analysis: An Introduction[M].Oxford: Princeton University Press, 2003.
|