留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

形状记忆合金相变过程三维大变形有限元模拟

夏开明 潘同燕 刘山洪

夏开明, 潘同燕, 刘山洪. 形状记忆合金相变过程三维大变形有限元模拟[J]. 应用数学和力学, 2010, 31(10): 1201-1210. doi: 10.3879/j.issn.1000-0887.2010.10.007
引用本文: 夏开明, 潘同燕, 刘山洪. 形状记忆合金相变过程三维大变形有限元模拟[J]. 应用数学和力学, 2010, 31(10): 1201-1210. doi: 10.3879/j.issn.1000-0887.2010.10.007
XIA Kai-ming, PAN Tong-yan, LIU Shan-hong. Three Dimensional Large Deformation Analysis of Phase Transformation in Shape Memory Alloys[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1201-1210. doi: 10.3879/j.issn.1000-0887.2010.10.007
Citation: XIA Kai-ming, PAN Tong-yan, LIU Shan-hong. Three Dimensional Large Deformation Analysis of Phase Transformation in Shape Memory Alloys[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1201-1210. doi: 10.3879/j.issn.1000-0887.2010.10.007

形状记忆合金相变过程三维大变形有限元模拟

doi: 10.3879/j.issn.1000-0887.2010.10.007
详细信息
    作者简介:

    夏开明(1969- ),男,博士,助理研究教授,任美国土木工程师学会计算力学技术委员会委员(联系人.E-mail:kaiming.xia@gmail.com).

  • 中图分类号: TG113.26;O343.5

Three Dimensional Large Deformation Analysis of Phase Transformation in Shape Memory Alloys

  • 摘要: 形状记忆合金(SMA)一直被作为智能材料开发,并被用于阻尼器、促动器和智能传感器元件.形状记忆合金(SMA)的一项重要特性,是它具有恢复在机械加卸载周期下产生的大变形而不表现出永久变形的能力.该文旨在介绍一种由应力产生的相变且可以描述马氏体和奥氏体之间的超弹性滞回环现象本构方程.形状记忆合金的马氏体系数假设为应力偏张量的函数,因此形状记忆合金在相变过程中锁定体积.本构模型是在大变形有限元的基础上执行的,采用了现时构型Lagrange大变形算法.为了方便地使用Cauchy应力和线性应变本构关系,使用了与旋转无关的Jaumann应力增率计算应力.数值分析结果表明,相变引起的超弹性滞回环可以有效地通过该文提出的本构方程和大变形有限元模拟.
  • [1] BirmanV. Review of mechanics of shape memory alloy structures[J].Applied Mechanics Reviews, 1997, 50(11):629-645. doi: 10.1115/1.3101674
    [2] Duerig T W, Melton K N, Stockel D, Wayman C M.Engineering Aspects of Shape Memory Alloys[M].London: Butterworth-Heinemann, 1990, 137-148.
    [3] Lubliner J, Auricchio F. Gereralized plasticity and shape memory alloys[J]. International Journal of Solids and Structures, 1996, 33(7):991-1003. doi: 10.1016/0020-7683(95)00082-8
    [4] Auricchio F, Taylor R L, Lubliner J. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior[J]. Comp Meths Appl Mech Eng, 1997,146(3/4):281-312. doi: 10.1016/S0045-7825(96)01232-7
    [5] Barret D J, Sullivan B J. A three-dimensional phase transformation model for shape memory alloys[J]. J Intelligent Mater Syst Struct, 1995, 6(6): 831-839.
    [6] Brinson L C, Lammering R. Finite-element analysis of the behavior of shape memory alloys and their applications[J]. International Journal of Solids and Structures,1993, 30(23): 3261-3280.
    [7] Qidwai M A, Lagoudas D C. Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms[J]. Int J Numer Meths Eng, 2000, 47(6): 1123-1168.
    [8] Rengarajan G, Kumar R K, Reddy J N. Numerical modeling of stress induced martensitic phase transformations in shape memory alloys[J].International Journal of Solids and Structures,1998, 35(14): 1489-1513.
    [9] Tanaka K, Nishimura F, Hayashi T, Tobushi H, Lexcellent C. Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads[J]. Mechnica of Materials,1995,19(4): 281-292.
    [10] Masud A, Xia K. A variational multiscale method for computational inelasticity: application to superelasticity in shape memory alloys[J]. Comp Meths Appl Mech Engrg,2006,195(33/36): 4512-4531.
    [11] Masud A, Panahandeh M, Aurrichio F. A finite-strain finite element model for the pseudoelastic behavior of shape memory alloys[J]. Comp Meths Appl Mech Engrg, 1997, 148(1/2): 23-37. doi: 10.1016/S0045-7825(97)00080-7
    [12] Auricchio F. A robust integration-algorithm for a finite-strain shape memory alloy superelastic model[J].Int J Plasticity, 2001,17(7): 971-990. doi: 10.1016/S0749-6419(00)00050-4
    [13] Stein E, Sagar G. Theory and finite element computation of cyclic martensitic phase transformation at finite strain[J]. Int J Numer Meth Engrg,2008,74(1): 1-31. doi: 10.1002/nme.2148
    [14] Hughes T J R, Winget J. Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis[J]. Int J Numer Methods Eng,1980, 15(12): 1862-1876.
    [15] Simo J C, Hughes T J R. Computational Inelasticity[M].New York:Springer-Verlag, 1998.
    [16] Belytschko T, Liu W K, Moran B. Nonlinear Finite Elements for Continua and Structures[M]. John Wiley & Sons Ltd,2000.
  • 加载中
计量
  • 文章访问数:  2113
  • HTML全文浏览量:  184
  • PDF下载量:  1142
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-07-30
  • 刊出日期:  2010-10-15

目录

    /

    返回文章
    返回