留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不动点问题平衡问题及变分不等式问题的具弱压缩的粘性逼近

张石生 李向荣 陈志坚 柳京爱

张石生, 李向荣, 陈志坚, 柳京爱. 不动点问题平衡问题及变分不等式问题的具弱压缩的粘性逼近[J]. 应用数学和力学, 2010, 31(10): 1211-1219. doi: 10.3879/j.issn.1000-0887.2010.10.008
引用本文: 张石生, 李向荣, 陈志坚, 柳京爱. 不动点问题平衡问题及变分不等式问题的具弱压缩的粘性逼近[J]. 应用数学和力学, 2010, 31(10): 1211-1219. doi: 10.3879/j.issn.1000-0887.2010.10.008
ZHANG Shi-sheng, LEE Heung-wing Joseph, CHAN Chi-kin, LIU Jing-ai. Viscosity Approximation With Weak Contractions for Fixed Point Problem Equilibrium Problem and Variational Inequality Problem[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1211-1219. doi: 10.3879/j.issn.1000-0887.2010.10.008
Citation: ZHANG Shi-sheng, LEE Heung-wing Joseph, CHAN Chi-kin, LIU Jing-ai. Viscosity Approximation With Weak Contractions for Fixed Point Problem Equilibrium Problem and Variational Inequality Problem[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1211-1219. doi: 10.3879/j.issn.1000-0887.2010.10.008

不动点问题平衡问题及变分不等式问题的具弱压缩的粘性逼近

doi: 10.3879/j.issn.1000-0887.2010.10.008
详细信息
    作者简介:

    张石生(1934- ),男,云南曲靖人,教授(联系人.E-mail:changss@yahoo.cn);陈志坚(E-mail:machanck@polyu.edu.hk);李向荣(E-mail:majlee@polyu.edu.hk);柳京爱(E-mail:liujingai@bipt.edu.cn)

  • 中图分类号: O177.91

Viscosity Approximation With Weak Contractions for Fixed Point Problem Equilibrium Problem and Variational Inequality Problem

  • 摘要: 借助具弱压缩的粘性逼近,提出一种新的修正的迭代算法,用以寻求一公共元,它既是一无穷族非扩张映像的公共不动点集中的点,也是一有限族的平衡问题的解集中的点,而且它还是一变分不等式的解.在适当的条件下,一些强收敛定理在Hilbert空间的框架下被建立.所得结果推广和改进了Colao等,Plubtieng 等,Colao等,Yao等及其他人的一些最新的结果.
  • [1] Browder F E, Petryshyn W V. Construction of fixed points of nonlinear mappings in Hilbert space[J]. J Math Anal Appl, 1967, 20: 197-228. doi: 10.1016/0022-247X(67)90085-6
    [2] Yamada I, Ogura N. Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain-nonexpansive mappings[J]. Numer Funct Anal Optim, 2004, 25(7/8): 619-655.
    [3] Plubtieng S, Punpaeng R. A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces[J]. J Math Anal Appl, 2007, 336(1): 455-469. doi: 10.1016/j.jmaa.2007.02.044
    [4] Shimoji K,Takahashi W. Strong convergence to common fixed points of infinite nonexpansive mappings and applications[J]. Taiwanese J Math, 2001, 5(2): 387-404.
    [5] Colao V, Acedo G L, Marino G. An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings[J]. Nonlinear Anal,2009, 71(7/8): 2708-2715. doi: 10.1016/j.na.2009.01.115
    [6] Colao V, Marino G, Xu H K. An iterative method for finding common solutions of equilibrium problem and fixed point problems[J]. J Math Anal Appl, 2008, 344(1): 340-352. doi: 10.1016/j.jmaa.2008.02.041
    [7] Yao Y, Liou Y C, Yao J C. Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings[J]. Fixed Point Theory Appl, 2007, 2007.Art ID 64363.doi: 1155/2007/64363.
    [8] Alber Ya I, Guerre-Delabriere. Principles of weakly contractive maps in Hilbert spaces[C]Gohberg I,Lyubich Yu,Eds. New Results in Operator Theory and Its Applications,98.Basel: Birkhuser Verlag, 1997,7-22.
    [9] Song Y S. Equivalent theorems of the convergence between proximal type algorithms[J]. Nonlinear Anal, 2009, 71(1/2): 293-300. doi: 10.1016/j.na.2008.10.067
    [10] Rhoades B E. Some theorems on weakly contractive maps[J]. Nonlinear Anal, 2001, 47(4):2683-2693. doi: 10.1016/S0362-546X(01)00388-1
    [11] 张石生.Banach空间中广义混合平衡问题[J]. 应用数学和力学, 2009, 30(9): 1033-1041.
    [12] Combettes P L, Hirstoaga S A.Equilibrium programming in Hilbert spaces[J]. J Nonlinear Convex Anal, 2005, 6(1): 2005: 117-136.
  • 加载中
计量
  • 文章访问数:  1836
  • HTML全文浏览量:  132
  • PDF下载量:  909
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-09-08
  • 刊出日期:  2010-10-15

目录

    /

    返回文章
    返回