Three Solutions for Inequalities Dirichlet Problem Driven by p(x)-Laplacian
-
摘要: 讨论了一类具有非光滑位势的p(x)-Laplace非线性椭圆问题.利用非光滑的三临界点定理证明了该问题在变指数Sobolev空间W1,p(x)0(Ω)中至少存在3个非平凡解.
-
关键词:
- p(x)-Laplician /
- 微分包含问题 /
- 三临界点定理
Abstract: A class of nonlinear elliptic proplem driven by p(x)-Laplacian with a nonsmooth locally Lipschitz potential was considered.Applying the version of non-smooth three-critical-point theorem, existence of three solutions of the problem in W01, p(x)(Ω)was proved. -
[1] Ruzicka M. Electrortheological Fluids: Modeling and Mathematical Theory[M]. Berlin: Springer-Verlag, 2000. [2] Zhikov V V. Averaging of functionals of the calculus of variations and elasticity theory[J]. Math USSR Izv, 1987, 29(1):33-66. doi: 10.1070/IM1987v029n01ABEH000958 [3] Fan X L. On the sub-supersolition methods for p(x)-Laplacian equations[J]. J Math Anal Appl, 2007, 330(1):665-672. doi: 10.1016/j.jmaa.2006.07.093 [4] Fan X L, Zhang Q H. Eigenvalues of p(x)-Laplacian Dirichlet problem[J]. J Math Anal Appl, 2005, 302(2):306-317. doi: 10.1016/j.jmaa.2003.11.020 [5] Fan X L, Zhang Q H. Existence of solutions for p(x)-Laplacian Dirichlet problems[J]. Nolinear Anal, 2003, 52(8):1843-1852. doi: 10.1016/S0362-546X(02)00150-5 [6] Fan X L, Zhao D. On the generalized Orlicz-sobolev spaces Wk,p(x)(Ω)[J]. J Gansu Educ College, 1998, 12(1):1-6. [7] Fan X L, Zhao D. On the spaces Lp(x) and Wm,p(x)[J]. J Math Anal Appl, 2001, 263(2):424-446. doi: 10.1006/jmaa.2000.7617 [8] Liu S. Multiple solutions for coercive p-Laplacian equations[J]. J Math Anal Appl, 2006, 316(1):229-236. doi: 10.1016/j.jmaa.2005.04.034 [9] Dai G W. Three solutions for a Neumann-type differential inclution problem involving the p(x)-Laplacian[J]. Nolinear Anal, 2009, 70(10):3755-3760. doi: 10.1016/j.na.2008.07.031 [10] Dai G W, Liu W L. Three solutions for a differential inclusion problem involving the p(x)-Laplacian[J]. Nolinear Anal, 2009, 71(11):5318-5326. doi: 10.1016/j.na.2009.04.019 [11] Kristaly A. Infinitely many solutions for a differential inclusion problem in RN[J]. J Differential Equations, 2006, 220(2):511-530. doi: 10.1016/j.jde.2005.02.007 [12] Chang K C. Variational mathods for nondifferentiable functionals and their applications to partial differential equations[J]. J Math Anal Appl, 1981, 80(1):102-129. doi: 10.1016/0022-247X(81)90095-0
计量
- 文章访问数: 2066
- HTML全文浏览量: 173
- PDF下载量: 859
- 被引次数: 0