留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

由p(x)Laplace算子导出的不等式Dirichlet问题的三解

葛斌 薛小平 郭梦舒

葛斌, 薛小平, 郭梦舒. 由p(x)Laplace算子导出的不等式Dirichlet问题的三解[J]. 应用数学和力学, 2010, 31(10): 1220-1228. doi: 10.3879/j.issn.1000-0887.2010.10.009
引用本文: 葛斌, 薛小平, 郭梦舒. 由p(x)Laplace算子导出的不等式Dirichlet问题的三解[J]. 应用数学和力学, 2010, 31(10): 1220-1228. doi: 10.3879/j.issn.1000-0887.2010.10.009
GE Bin, XUE Xiao-ping, GUO Meng-shu. Three Solutions for Inequalities Dirichlet Problem Driven by p(x)-Laplacian[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1220-1228. doi: 10.3879/j.issn.1000-0887.2010.10.009
Citation: GE Bin, XUE Xiao-ping, GUO Meng-shu. Three Solutions for Inequalities Dirichlet Problem Driven by p(x)-Laplacian[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1220-1228. doi: 10.3879/j.issn.1000-0887.2010.10.009

由p(x)Laplace算子导出的不等式Dirichlet问题的三解

doi: 10.3879/j.issn.1000-0887.2010.10.009
基金项目: 国家自然科学基金资助项目(10971043;11001063);黑龙江省杰出青年基金资助项目(A200803)
详细信息
    作者简介:

    葛斌(1979- ),男,黑龙江人,讲师,博士(联系人.Tel:+86-451-55693902;E-mail:ge-bin791025@hrbeu.edu.cn);薛小平(1963- ),男,黑龙江人,教授,博士,博士生导师(E-mail:xiaopingxue@263.net);郭梦舒(1972- ),男,黑龙江人,副教授,博士(E-mail:msguo@hit.edu.cn).

  • 中图分类号: O175

Three Solutions for Inequalities Dirichlet Problem Driven by p(x)-Laplacian

  • 摘要: 讨论了一类具有非光滑位势的p(x)-Laplace非线性椭圆问题.利用非光滑的三临界点定理证明了该问题在变指数Sobolev空间W1,p(x)0(Ω)中至少存在3个非平凡解.
  • [1] Ruzicka M. Electrortheological Fluids: Modeling and Mathematical Theory[M]. Berlin: Springer-Verlag, 2000.
    [2] Zhikov V V. Averaging of functionals of the calculus of variations and elasticity theory[J]. Math USSR Izv, 1987, 29(1):33-66. doi: 10.1070/IM1987v029n01ABEH000958
    [3] Fan X L. On the sub-supersolition methods for p(x)-Laplacian equations[J]. J Math Anal Appl, 2007, 330(1):665-672. doi: 10.1016/j.jmaa.2006.07.093
    [4] Fan X L, Zhang Q H. Eigenvalues of p(x)-Laplacian Dirichlet problem[J]. J Math Anal Appl, 2005, 302(2):306-317. doi: 10.1016/j.jmaa.2003.11.020
    [5] Fan X L, Zhang Q H. Existence of solutions for p(x)-Laplacian Dirichlet problems[J]. Nolinear Anal, 2003, 52(8):1843-1852. doi: 10.1016/S0362-546X(02)00150-5
    [6] Fan X L, Zhao D. On the generalized Orlicz-sobolev spaces Wk,p(x)(Ω)[J]. J Gansu Educ College, 1998, 12(1):1-6.
    [7] Fan X L, Zhao D. On the spaces Lp(x) and Wm,p(x)[J]. J Math Anal Appl, 2001, 263(2):424-446. doi: 10.1006/jmaa.2000.7617
    [8] Liu S. Multiple solutions for coercive p-Laplacian equations[J]. J Math Anal Appl, 2006, 316(1):229-236. doi: 10.1016/j.jmaa.2005.04.034
    [9] Dai G W. Three solutions for a Neumann-type differential inclution problem involving the p(x)-Laplacian[J]. Nolinear Anal, 2009, 70(10):3755-3760. doi: 10.1016/j.na.2008.07.031
    [10] Dai G W, Liu W L. Three solutions for a differential inclusion problem involving the p(x)-Laplacian[J]. Nolinear Anal, 2009, 71(11):5318-5326. doi: 10.1016/j.na.2009.04.019
    [11] Kristaly A. Infinitely many solutions for a differential inclusion problem in RN[J]. J Differential Equations, 2006, 220(2):511-530. doi: 10.1016/j.jde.2005.02.007
    [12] Chang K C. Variational mathods for nondifferentiable functionals and their applications to partial differential equations[J]. J Math Anal Appl, 1981, 80(1):102-129. doi: 10.1016/0022-247X(81)90095-0
  • 加载中
计量
  • 文章访问数:  2066
  • HTML全文浏览量:  173
  • PDF下载量:  859
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-08-23
  • 刊出日期:  2010-10-15

目录

    /

    返回文章
    返回