留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强非线性多自由度动力系统主共振同伦分析法研究

原培新 李永强

原培新, 李永强. 强非线性多自由度动力系统主共振同伦分析法研究[J]. 应用数学和力学, 2010, 31(10): 1229-1238. doi: 10.3879/j.issn.1000-0887.2010.10.010
引用本文: 原培新, 李永强. 强非线性多自由度动力系统主共振同伦分析法研究[J]. 应用数学和力学, 2010, 31(10): 1229-1238. doi: 10.3879/j.issn.1000-0887.2010.10.010
YUAN Pei-xin, LI Yong-qiang. Study on Primary Resonance of Multi-Degree-of-Freedom Dynamic Systems With Strongly Non-Linearity Using the Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1229-1238. doi: 10.3879/j.issn.1000-0887.2010.10.010
Citation: YUAN Pei-xin, LI Yong-qiang. Study on Primary Resonance of Multi-Degree-of-Freedom Dynamic Systems With Strongly Non-Linearity Using the Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1229-1238. doi: 10.3879/j.issn.1000-0887.2010.10.010

强非线性多自由度动力系统主共振同伦分析法研究

doi: 10.3879/j.issn.1000-0887.2010.10.010
基金项目: 中央高校基本科研业务费专项资金资助项目(90405009)
详细信息
    作者简介:

    原培新(1953- ),男,辽宁营口人,教授,硕士(联系人.E-mail:neuypx@vip.163.com).

  • 中图分类号: O322

Study on Primary Resonance of Multi-Degree-of-Freedom Dynamic Systems With Strongly Non-Linearity Using the Homotopy Analysis Method

  • 摘要: 应用同伦分析方法(HAM)解决强非线性多自由度系统在谐波激振力下的主共振问题.同伦分析方法的有效性独立于所考虑的方程中是否含有的小参数.同伦分析方法提供了一个简单的方法,通过一个辅助参数h-来调节和控制级数解的收敛区域.两个具体算例表明,同伦分析方法得出的结果与修正Linstedt-Poincaré法、增量谐波平衡法的解决方案得出的结果相吻合.
  • [1] Melvin P J. On the construction of Poincaré-Lindstedt solutions: the nonlinear oscillator equation[J]. SIAM Journal on Applied Mathematics, 1977, 33(1): 161-194. doi: 10.1137/0133011
    [2] Nayfeh A H. Perturbation Methods[M]. New York: John Wiley & Sons, 1973.
    [3] Larionov G S, Khoang V T. The method of averaging in nonlinear dynamical problems occurring in the theory of viscoelasticity[J]. Polymer Mechanics, 1972, 8(1): 31-35.
    [4] Kakutani T, Sugimoto N. Krylov-Bogoliubov-Mitropolsky method for nonlinear wave modulation[J]. Physics of Fluids, 1974, 17(8): 1617-1625. doi: 10.1063/1.1694942
    [5] Cheung Y K, Chen S H, Lau S L. Modified Linstedt-Poincaré method for certain strongly nonlinear oscillators[J]. International Journal of Non-Linear Mechanics, 1991, 26(3): 367-378. doi: 10.1016/0020-7462(91)90066-3
    [6] Pierre C, Dowell E H. A study of dynamic instability of plates by an extended incremental harmonic balance method[J]. Transactions of the ASME. Journal of Applied Mechanics, 1985, 52(3): 693-697. doi: 10.1115/1.3169123
    [7] Andrianov I V, Danishevs’kyy V V, Awrejcewicz J. An artificial small perturbation parameter and nonlinear plate vibrations[J]. Journal of Sound and Vibration, 2005, 283(3): 561-571. doi: 10.1016/j.jsv.2004.04.041
    [8] Karmishin A V, Zhukov A I, Kolosov V G. Methods of Dynamics Calculation and Testing for Thin-Walled Structures[M]. Moscow: Mashinostroyenie, 1990.
    [9] Adomian G. A new approach to the heat equation—an application of the decomposition method[J]. Journal of Mathematical Analysis and Applications, 1986, 113(1): 202-209. doi: 10.1016/0022-247X(86)90344-6
    [10] Liao S J. Beyond Perturbation: Introduction to the Homotopy Analysis Method[M]. Boca Raton: Chapman & Hall/CRC Press, 2003.
    [11] Liao S J. A new branch of solutions of boundary-layer flows over an impermeable stretched plate[J]. International Journal of Heat Mass Transfer, 2005, 48(12): 2529-2539. doi: 10.1016/j.ijheatmasstransfer.2005.01.005
    [12] Liao S J. An explicit totally analytic approximation of Blasius viscous flow problems[J]. International Journal of Non-Linear Mechanics, 1999, 34(4): 759-778. doi: 10.1016/S0020-7462(98)00056-0
    [13] Liao S J. Series solutions of unsteady boundary-layer flows over a stretching flat plate[J]. Studies in Applied Mathematics, 2006, 117(3): 239-264. doi: 10.1111/j.1467-9590.2006.00354.x
    [14] 冯少东, 陈立群. Duffing简谐振子同伦分析法求解[J]. 应用数学和力学, 2009, 30(9): 1015-1020.
    [15] Liao S J. An approximate solution technique which does not depend upon small parameters: a special example[J]. International Journal of Non-Linear Mechanics, 1995, 30(3): 371-380. doi: 10.1016/0020-7462(94)00054-E
    [16] Liao S J. An approximate solution technique which does not depend upon small parameters (part 2): an application in fluid mechanics[J]. International Journal of Non-Linear Mechanics, 1997, 32(5):815-822. doi: 10.1016/S0020-7462(96)00101-1
    [17] 廖世俊.同伦分析方法:一种新的求解非线性问题的近似解析方法[J]. 应用数学和力学, 1998, 19(10): 885-890.
    [18] Wen J M, Cao Z C. Sub-harmonic resonances of nonlinear oscillations with parametric excitation by means of the homotopy analysis method[J]. Physics Letters A, 2007, 371(5): 427-431. doi: 10.1016/j.physleta.2007.09.057
    [19] Tan Y, Abbasbandy S. Homotopy analysis method for quadratic Riccati differential equation[J]. Communication Nonlinear Science and Numerical Simulation, 2008, 13(3): 539-546. doi: 10.1016/j.cnsns.2006.06.006
    [20] Abbasbandy S. Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method[J]. Chemical Engineering Journal, 2008, 136(2):144-150. doi: 10.1016/j.cej.2007.03.022
    [21] 李书, 王波, 胡继忠. 结构动力学逆特征值问题的同伦解法[J]. 应用数学和力学, 2004, 25(5): 529-534.
    [22] Chen S H, Cheung Y K. A modified lindstedt-poincare method for a strongly nonlinear two degree-of- freedom system[J]. Journal of Sound and Vibration, 1996, 193(4): 751-762. doi: 10.1006/jsvi.1996.0313
    [23] Cheung Y K, Chen S H, Lau S L. Application of incremental harmonic balance method to cubic non-linearity systems[J]. Journal of Sound and Vibration, 1990, 140(2): 273-286. doi: 10.1016/0022-460X(90)90528-8
  • 加载中
计量
  • 文章访问数:  1597
  • HTML全文浏览量:  127
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-09-03
  • 刊出日期:  2010-10-15

目录

    /

    返回文章
    返回