留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限挠度下Timoshenko梁中的非线性弯曲波及其混沌行为

张善元 刘志芳

张善元, 刘志芳. 有限挠度下Timoshenko梁中的非线性弯曲波及其混沌行为[J]. 应用数学和力学, 2010, 31(11): 1276-1286. doi: 10.3879/j.issn.1000-0887.2010.11.002
引用本文: 张善元, 刘志芳. 有限挠度下Timoshenko梁中的非线性弯曲波及其混沌行为[J]. 应用数学和力学, 2010, 31(11): 1276-1286. doi: 10.3879/j.issn.1000-0887.2010.11.002
ZHANG Shan-yuan, LIU Zhi-fang. Nonlinear Flexural Waves and Chaos Behavior in Finite-Deflection Timoshenko Beam[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1276-1286. doi: 10.3879/j.issn.1000-0887.2010.11.002
Citation: ZHANG Shan-yuan, LIU Zhi-fang. Nonlinear Flexural Waves and Chaos Behavior in Finite-Deflection Timoshenko Beam[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1276-1286. doi: 10.3879/j.issn.1000-0887.2010.11.002

有限挠度下Timoshenko梁中的非线性弯曲波及其混沌行为

doi: 10.3879/j.issn.1000-0887.2010.11.002
基金项目: 国家自然科学基金资助项目(10772129)
详细信息
    作者简介:

    张善元(1942- ),男,山西人,教授(联系人.Tel:+86-351-6010918;E-mail:syzhang@tyut.edu.cn).

  • 中图分类号: O347.4

Nonlinear Flexural Waves and Chaos Behavior in Finite-Deflection Timoshenko Beam

  • 摘要: 以Timoshenko梁理论为基础,引入了有限挠度和轴向惯性,建立了支配梁运动的非线性偏微分方程组,采用行波法求解,通过某些积分技巧,将其转化为一个非线性常微分方程.常微分方程的定性分析表明,在一定条件下,系统存在异宿轨道,预示着有冲击波解存在.借助Jacobi椭圆函数展开求解,得到了非线性波动方程的准确周期解及其当模数m→1退化情况下的冲击波解.进而考虑阻尼和外加横向载荷对系统的摄动,利用Melnikov函数给出了横截异宿点出现的阈值条件,从而表明系统具有Smale马蹄意义下的混沌性质.
  • [1] Thompson J M T, Virgin L N. Spatial chaos and localization phenomena in nonlinear elasticity[J]. Physics Letters A, 1998, 126(8/9): 494-496.
    [2] Hunt G W, Bolt H M, Thompos J M T. Structural localization phenomena and dynamical phase-space analogy[J]. Proc R Soc Lond A, 1989, 425: 245-267. doi: 10.1098/rspa.1989.0105
    [3] El Naschie M S. Stress Stability and Chaos in Structural Engineering[M]. London: Mc Graw-Hill, 1990.
    [4] Cross M C, Hohenberg P C. Spatiotermporal chaos[J]. Science, 1994, 263(5153): 1569-1570. doi: 10.1126/science.263.5153.1569
    [5] Abdullaev F Kh. Dynamical chaos of solitons and nonlinear periodic waves[J]. Physics Reports, 1989, 179(1): 1-78. doi: 10.1016/0370-1573(89)90098-7
    [6] Kodama Y, Ablowitz M J. Perturbations of solitons and solitary waves[J]. Studies in Appl Math, 1981, 64: 225-245.
    [7] Blyuss K B. Chaotic behavior of solutions to a perturbed Korteweg-de Vries equation[J]. Reports on Mathematical Physics, 2002, 49(1): 29-38. doi: 10.1016/S0034-4877(02)80003-9
    [8] ZHANG Shan-yuan, ZHUANG Wei. The strain solitary waves in a nonlinear elastic rod[J]. Acta Mechanica Sinica, 1987, 3(1): 62-72. doi: 10.1007/BF02486784
    [9] 郭建刚, 周丽军, 张善元. 有限变形弹性杆中的几何非线性[J]. 应用数学和力学, 2005, 26(5): 614-620.
    [10] LIU Zhi-fang, ZHANG Shan-yuan. Nonlinear waves and periodic solution in finite deformation elastic rod[J]. Acta Mechanica Solida Sinica, 2006, 19(1): 1-8.
    [11] Samsonov A M. Strain Solitions in Solid and How to Construct Them[M]. New York: Chapman & Hall/CRC, 2001.
    [12] Porubov A V, Velarde M G. Dispersive-dissipative solitons in nonlinear solids[J]. Wave Motion, 2000, 31(3): 197-207. doi: 10.1016/S0165-2125(99)00032-3
    [13] WANG Ming-liang, ZHOU Yu-bing, LI Zhi-bing. Apllication of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Physics Letters A, 1996, 216(1/5): 67-75. doi: 10.1016/0375-9601(96)00283-6
    [14] Nayfeh A H, Balachandran B. Applied Nonlinear Dynamics[M]. New York: John Wiley and Sons, Inc 1995.
    [15] Melnikov V K. On the stability of the center for time periodic perturbations[J]. Trans Moscow Math Soc, 1963, 12:1-57.
  • 加载中
计量
  • 文章访问数:  2190
  • HTML全文浏览量:  240
  • PDF下载量:  783
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-09-03
  • 刊出日期:  2010-11-15

目录

    /

    返回文章
    返回